Смекни!
smekni.com

Информационные технологии в экономике 2 (стр. 27 из 46)

Ниже рассмотрены некоторые, наиболее часто встречающиеся топологии.

Полносвязная топология соответствует сети, в которой каждый компьютер сети связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Для каждой пары компьютеров должна быть выделена отдельная электрическая линия связи. Полносвязные топологии применяются редко. Чаще всего используется многомашинных комплексах или глобальных сетях при небольшом количестве компьютеров.

Ячеистая топология получается из полносвязной путѐм удалением некоторых возможных связей. в сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми идет интенсивный обмен данными, а для обмена данными между компьютерами, не связанными непосредственно, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение многих компьютеров и характерна, как правило, для глобальных сетей.

Общая шина является очень распространѐнной (а до недавнего времени самой распространѐнной) топологией для локальных сетей. В этом случае все компьютеры соединяются с общей шиной. Передаваемая информация может распространятся в обе стороны. Применение общей шины снижает стоимость проводки, унифицирует подключение различных модулей, обеспечивает возможность почти мгновенного широковещательного обращения ко всем станция сети. Таким образом, основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьѐзный недостаток общей шины заключается в еѐ низкой надѐжности: любой дефект кабеля или какого-нибудь из многочисленных разъѐмов полностью парализует всю сеть. Другим недостатком общей шины является еѐ невысокая производительность, так как при таком способе подключения только один компьютер в каждый момент времени может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

Топология звезда. В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети. В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - существенно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединѐн, и только неисправность концентратора влечѐт за собой неработоспособность всей сети. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещѐнные администратором передачи. К недостаткам этой топологии относится более высокая, по сравнению с общей шиной, стоимость прокладки кабеля и высокая стоимость сетевого оборудования за счѐт покупки сетевого концентратора.

Кроме того, число узлов сети ограничивается числом портов концентратора. Иногда имеет смысл строить сеть из нескольких концентраторов, иерархически соединѐнных между собой связями типа звезда. В настоящее время иерархическая звезда является самым распространѐнным типом топологии связей как в локальных, так и в глобальных сетях.

В сетях с кольцевой конфигурацией данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении. Если компьютер распознаѐт данные как "свои", то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или выключения одного из компьютеров не прерывался процесс передачи данных между остальными узлами сети. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи - данные, сделав полный оборот, возвращаются к узлуисточнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связанности сети и поиска узла, работающего некорректно.

В то время как небольшие сети, как правило, имеют типовую топологию – звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией или гетерогенными сетями.

В сетях с небольшим (10-30) числом компьютеров чаще всего используется одна из типовых топологий – общая шина, кольцо, звезда или полносвязная сеть. Все они обладают свойством однородности, т.е. все компьютеры имеют одинаковые права доступа к другим компьютерам (за исключением центрального компьютера при соединении звезда). Такая структура позволяет достаточно просто наращивать число компьютеров, облегчает обслуживание и использование сети.

Однако при построении больших сетей однородная структура превращается из достоинства в недостаток. Появляются ограничения:

- Ограничение на длину связи между узлами;

- Ограничение на количество узлов в сети;

- Ограничение на интенсивность трафика, порождаемого узлами сети.

Структура сети делится на 2 составляющих: физическая и логическая топология. Под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической – конфигурация информационных потоков между компьютерами сети. Во многих случаях они совпадают.

Организация взаимодействия устройств в сети – довольно сложная задача, поэтому применяется декомпозиция. Процедура декомпозиции включает в себя чѐткое определение функций каждого модуля, решающего отдельную задачу, и интерфейс между ними. При декомпозиции часто применяется многоуровневый подход. В таком случае чѐтко определяются функции каждого уровня и интерфейсы между ними. Интерфейс определяет набор функций, которые нижележащий уровень представляет вышележащему. Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называют протоколами. Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с чѐтко определѐнными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом.

Протокол является соглашением, но из этого вовсе не следует, что он является стандартным. На практике же все стремятся использовать стандартные протоколы. В начале 80-х годов ряд международных организаций по стандартизации – ISO, ITU-T и некоторые другие – разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых сетей (Open System Interconnection) или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, даѐт им стандартные имена и указывает, какие функции должен выполнять каждый уровень. Уровни модели OSI можно чѐтко разделить на 7 уровней.

Уровень 1: физический - битовые протоколы передачи информации;

Уровень 2: канальный - формирование кадров, управление доступом к среде;

Уровень 3: сетевой - маршрутизация, управление потоками данных;

Уровень 4: транспортный - обеспечение взаимодействия удаленных процессов;

Уровень 5: сеансовый - поддержка диалога между удаленными процессами;

Уровень 6: представительский - интерпретация передаваемых данных;

Уровень 7: прикладной - пользовательское управление данными,

Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль, в том числе и транспортной среде. Благодаря этому общая задача передачи данных расчленяется на отдельные легко обозримые задачи.

Необходимые соглашения для связи одного уровня с выше- и нижерасположенными называют протоколом.

Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.

С учетом вышеизложенного можно вывести следующую уровневую модель с административными функциями, выполняющимися в пользовательском прикладном уровне. Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень.

На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень.

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию. Кроме того, здесь стандартизуются типы разъѐмов и назначение каждого контакта.