переводит (2.35) в уравнение
где
а аргументом функции q и ее производных служит функция t = t (s), обратная к функции s = s (f), определяемой из (2.36) с помощью квадратуры; см. (1.7). В этих формулах штрих означает дифференцирование по t, так что q' = dqldt.
Замена переменных (2.34), (2.36) называется подстановкой Лиувилля. Эта подстановка, или повторное применение ее, часто приводит к дифференциальному уравнению типа (2.37), в котором функция f (s) «близка» к постоянной. Простой предельный случай такой подстановки см. в упр. 1.1(с).
(xiv)Уравнения Риккати. В п. (xi), (xii) и (xiii) рассматривались преобразования уравнения (2.1) в различные линейные уравнения второго порядка или в соответствующие линейные системы двух уравнений первого порядка. Иногда удобно преобразовать (2.1) в соответствующее нелинейное уравнение или систему. Для этого чаще всего используется следующий метод. Пусть
так что
Это уравнение называется уравнением Риккати, соответствующим (2.1). (В общем случае уравнение вида
Читателю предоставляется проверка того факта, что если и (t) - решение уравнения (2.1), не равное нулю на t - интервале
уравнения (2.1), не равное нулю ни в одной точке из J'.
(xv)Преобразование Прюфера. В случае, когда уравнение (2.1) имеет вещественные коэффициенты, часто используется следующее преобразование . Пусть
Поскольку и и и' не могут обратиться в нуль одновременно, то, фиксируя соответствующее значение функции
В уравнение (2.43) входит лишь одна из неизвестных функций
Преимущество уравнения (2.43) по сравнению с (2.40) состоит в том, что всякое решение уравнения (2.43) существует на всем интервале J, где непрерывны р и q. Это видно из соотношения, связывающего решения уравнений (2.1) и (2.43).
Упражнение 2.1. Проверьте, что если функция
при фиксированном значении
Соотношения (2.46) и (2.47) следует понимать так, что интегралы Римана - Стильтьеса от обеих их частей равны. Обратно, (непрерывные) решения системы уравнений (2.46), (2.47) определяют решения уравнения (2.1) с помощью соотношений (2.45). Заметим, что если q (t) > 0, р (t) > 0 и функция q(t) р(t) имеет локально ограниченную вариацию, то, полагая
§ 3.Теоремы Штурма
В этом параграфе мы будем рассматривать только уравнение вида (2.1) с вещественными непрерывными коэффициентами р (t) > 0, q (t). Под «решением» мы будем понимать «вещественное, нетривиальное (т. е.
Лемма 3.1.Пусть
Доказательство. Заметим, что в той точке t, где u=0, т. е. где
В теоремах этого параграфа будут рассматриваться два уравнения
где функции
В этом случае уравнение (3.1) называется мажорантой Штурма для (3.1) на J, а уравнение (3.1)-минорантой Штурма для (3.1). Если дополнительно известно, что соотношения