Смекни!
smekni.com

Основные понятия дифференциального исчисления и история их развития (Бакалавр) (стр. 2 из 9)

Символы и не являются совершенными, однако во многих случаях, когда возможность ошибиться будет исключена, мы будем ими пользоваться вместо символов dхх и dху или, соответственно, dtх и dtу.

Значение формулы (4) становится ясным, если обратить внимание на то, что при отыскании производной приходится пользоваться двумя формулами для определения производной у по х. А именно, когда переменная у зависит непосредственно от х, то

у’х = f’(х);

когда же зависимость переменной у от х даётся при помощи некоторой (промежуточной) функции и, то

у’х = f’(и)и’х.

При отыскании же дифференциалов получим в обоих случаях одинаковые формулы:

dху = f’(х) dхх, dху = f’(и) dхи

или

= f’(х) dх, dу = f’(и) dи.

1.4 Дифференциал суммы, произведения и частного.

Из теорем о производных суммы, произведения и частного можно получить аналогичные формулы для дифференциалов суммы, произведения и частного. Пусть и и J — функции от х:

и = f(х), J = j(х),

имеющие непрерывные частные производные.

Если положить у = и + J,

то у’х = и’х + J’х,

откуда у’х = и’х + J’х,

следовательно dу = dи + dJ,

то есть d(и + J) = + dJ.

Аналогично dси = сdи,

где с – постоянное число;

d(иJ) = иdJ + Jdи,

d ( ) = .

Замечание. На практике часто бывает выгоднее оперировать дифференциалами, а потом делением на дифференциал независимой переменной переходить к производной.

1.5 Геометрическая интерпретация дифференциала.

Дифференциал можно геометрически представить следующим образом:

Из рис. 2 видно, что = f’(х) = tg a . = СД.

Таким образом, если Dу – приращение ординаты кривой, то – приращение ординаты касательной.

Дифференциал dу, вообще говоря, отличается от Dу, но их разность очень мала по сравнению для очень малых dх, так как

= a (Dх) = 0

На практике, когда речь идёт только о приближённых значениях, можно для малых приращений считать

Dу = = f’(х)dх.

2. Основные понятия интегрального исчисления функций одной переменной.

2.1. Первообразная функция и неопределённый интеграл.

Основной задачей дифференциального исчисления является нахождение производной f’(х) или дифференциала f’(х)данной функции f(х).

В интегральном исчислении решается обратная задача:

Дана функция f(х); требуется найти такую функцию F(х), производная которой f(х) в области определения функции f(х), то есть, в этой области функции f(х) и F(х) связаны соотношением F’(х) = f(х) или dF(х)= F’(х)dх = f(х)dх.

Определение. Функция F(х) называется первообразной функцией для данной функции f(х), если для любого х из области определения f(х) выполняется равенство F’(х) = f(х) или dF(х) = f(х)dх.

Примеры. 1) Пусть f(х) = cos х.

Решение: Тогда F(х) = sin х, так как F’(х) = cos х = f(х) или dF(х) = cos х = f(х)

2) Пусть f(х) = х2.

Решение: Тогда F(х) = , так как F’(х) = х2 = f(х) или dF(х) = х2 = f(х)dх.

Известно, что если две функции f(х) и j(х) отличаются друг от друга на постоянную величину, то производные или дифференциалы этих функций равны, то есть, если f(х) = j(х) + С, то f’(х) = j’(х) или f’(х) = j’(х)dх.

Известно также, что и наоборот, если две функции f(х) и j(х) имеют одну и ту же производную или один и тот же дифференциал, то они отличаются друг от друга на постоянную величину, то есть, если

f’(х) = j’(х) или dхf(х) = dj(х), то

f(х) = j(х) + С.

Замечание. Действительно, если производная f’(х) обращается в нуль для любых значений х в (а,в), то в этом интервале f(х) = С.

В самом деле, если х1Î (а,в) и х2 Î (а,в), то в силу теоремы Лагранжа, имеем f(х2) – f(х1) = (х2–х1) f’(х0), где х1< х0< х2 . Но, так как f’(х0) = 0, то f(х2) – f(х1) = 0.

Отсюда непосредственно следует что, если в формуле у = F(х) + С мы будем придавать постоянной С все возможные значения, то получим все возможные первообразные функции для функции f(х).

Определение. Множество F(х) +С всех первообразных функций для функции f(х), где С принимают все возможные числовые значения, называется неопределённым интегралом от функции f(х) и обозначается символом

f(х)

Таким образом, по определению,

f(х) = F(х) + С, (А)

где F’(х) = f(х) или dF(х) = f(х)dх и С – произвольная постоянная. В формуле (А) f(х) называется подынтегральной функцией, f(х) – подынтегральным выражением, а символ – знаком неопределённого интеграла.

Неопределённым интегралом называют не только множество всех первообразных, но и любую функцию этого множества.

Определение. Нахождение первообразной по данной функции f(х) называется интегрированием

2.2. Геометрический смысл неопределённого интеграла.

Пусть задан неопределённый интеграл F(х) + С для функции f(х) в некотором интервале. При фиксированном значении С = С1 получим конкретную функцию у1 = F(х) + С1, для которой можно построить график; его называют интегральной кривой. Изменив значение С и положив С = С2, получим другую первообразную функцию С соответствующей новой интегральной кривой.

Аналогично можно построить график любой первообразной функции. Следовательно, выражение у = F(х) + С можно рассматривать как уравнение семейства интегральных кривых неопределённого интеграла F(х) + С. Величина С является параметром этого семейства – каждому конкретному значению С соответствует единственная интегральная кривая в семействе. Интегральную кривую, соответствующую значению параметра С2, можно получить из интегральной кривой, соответствующей значению параметра С1, параллельным сдвигом в направлении оси Оу на величину /С2 – С1/. На рис. 3 изображён неопределённый интеграл х2 + С от функции f(х) = 2х, то есть, семейства парабол.

2.3. Основные свойства неопределённого интеграла.

1) Производная неопределённого интеграла равна подынтегральной функции, то есть,

[ f(х)]’ = f(х) .
Доказательство. Согласно определению неопределённого интеграла,

f(х) = F(х) + С, (V)

где F’(х) = f(х)

Дифференцируя обучение части равенства (V), имеем

[ f(х)]’ = [F(х) + С ]’,

откуда

[ f(х) ]’ = F’(х) + С1 = F’(х) = f(х) .

2)

Дифференциал неопределённого интеграла равен подынтегральному выражению, то есть

d f(х)dх = f(х)dх

Доказательство. Согласно определению неопределённого интеграла,
f(х) = F(х) + С

d f(х)dх = d(F(х) + С) = dF(х) = dС = F’(х)dх = f(х)dх

3)

Неопределённый интеграл от дифференциала некоторой функции F(х) равен самой функции с точностью до произвольной постоянной С, то есть

dF(х) = F(х) + С, (v)

Доказательство. Продифференцировав оба равенства (v), будем иметь

d dF(х) = dF(х) (по свойству 2)

d(F(х) + С) = dF(х)
следовательно, функции dF(х) и dF(х) отличаются друг от друга на постоянную величину, то есть

dF(х) = F(х) + С