Как отмечает Г.И.Шипов (22) так же как в СТО, так и в ОТО Эйнштейну не удалось преодолеть фундаментальное и принципиальное противоречие, свойственное абсолютной системе отсчета Ньютона: пространство-время и материя по прежнему представляют собою раздельные сущности. Будущее теории пространства-времени, которая бы устранила это противоречие, связывается с физическим вакуумом, как некоторой первоматерии, положившей начало вещественной эволюции Вселенной (11,21,22). Геометрия этой не квантованной субстанции связана с кручениями и лишена привычных представлений о трансляционных координатах пространства-времени (22). В частности, концепция физического вакуума Г.И.Шипова (22), базируется на ОТО А.Эйнштейна, но представляет движение в 10-мерной форме, где к 4 трансляционным координатам пространства-времени приложены 6 торсионных уравнений, описывающих изменение ориентации четырехмерного пространства-времени (три уравнения Эйлера, описывающих вращательное движение твердого тела для центра масс, и 3 неголономных координаты – приращения углов Эйлера, описывающих реальное, а не координатное, как у А.Эйнштейна, вращение).
Современное направление познания физического движения связывается с абсолютно геометризированными уравнениями движения, исключающими его классические характеристики (массу, энергию, импульс и т.д.). Но как бы ни подтверждался опытными данными предельно геометризированный подход к описанию природы, проблема понимания и объяснения объективных законов движения материи (равно как и причинно-следственное обоснование идей геометризации) остается открытой. Неразрешенность фундаментальной для физики проблематики, связанной с силами инерции (реальны ли они вообще? что является их источником? являются ли они внешними или внутренними по отношению к изолированной системе?) (22), является иллюстрацией скромной реализации в естествознании конца ХХ века, идей начала ХХ века.
1.4. Математика и физические модели материи. Кризис в естествознании косвенно отражает и прикладные проблемы математики. Применяемые в физике математические средства, не всегда доступны, не только специалистам другим областей, но даже ограниченному кругу физиков. В тоже время априори очевидно, что живые системы, органические формы природы пользуются какими-то чрезвычайно простыми механизмами вычислений, тесно связанными с особенностями симметрии их организации.
Одна из прикладных к физике проблем математики связана с интегральным исчислением, при котором, например, для зарядов и фотонов (как точечных масс), интегрирование ведется в пределах от 0 до
, в результате чего соответствующие интегралы обращаются в бесконечность. Создатель квантовой электродинамики П.Дирак (22) эту проблему сформулировал в радикальной форме: “Правильный вывод состоит в том, что основные уравнения неверны. Их нужно существенно изменить, с тем, чтобы в теории вообще не возникали бесконечности и чтобы уравнения решались точно, по обычным правилам, без всяких трудностей. Это условие потребует каких-то очень серьезных изменений: небольшие изменения ничего не дадут”.Существуют проблемы, связанные с математикой мнимых и комплексных чисел. Появившись в математике как пробочный продукт операций с действительными числами, мнимые и комплексные числа долгое время не могли получить геометрической интерпретации, не говоря о физической (И.К.Андронов, Математика действительных и комплексных чисел, - М.: Просвещение, 1975 г, с.96-115). Появление мнимых чисел в физике вызывало серьезные теоретические споры, а их физическое толкование, например, в волновой функции Шредингера Максом Борном, связывалось с вероятностными характеристиками движения в микромире (11).
Подобные споры, после представления Минковским геометрической интерпретации пространства-времени, были связаны с правомочностью включения мнимой единицы (
) в уравнения. Это произошло после того, как в 1905 году Пуанкаре обнаружил, что преобразования Лоренца математически соответствуют повороту в четырехмерном пространстве имеющем три пространственных измерения и одно временное измерение - три действительных координаты х, у, z и мнимую координату времени ict. В 1908 году Минковский завершил построение четырехмерной модели пространства-времени. В соответствии с подходом Минковского, вместо действительной сt можно использовать мнимую ict . Четырехмерные координаты, в которых используется мнимое время, называют координатами Минковского, в физике используются ограниченно, носят название Галилеевых координат и, по мнению физиков, более пригодны для глубокого анализа явлений, однако требуют усложнения математического аппарата (21).Утверждение Минковского о единой природе пространства и времени вызвало критику ученых. В частности Дж. Уиллер отмечает: “Но теперь уже понимают, что нельзя преувеличивать утверждений Минковского. Совершенно справедливо, что время и пространство, неразделимые части единого целого. Однако неверно, что время качественно то же самое, что пространство. Почему же это неверно? ….. Какой же еще может быть к ним законный подход, как не равноправный, в формуле
для пространственно-подобного интервала? Равноправный подход – конечно, но одинаковая природа - никак нет! В этой формуле есть знак минус, и его не изгнать оттуда никакими уловками. Знак минус отражает разную природу пространства и времени. Перейти к мнимому числу – вовсе не означает избавиться от этого “минуса”. Это случилось бы, если бы величина it была реальной, но она мнима. Нет часов, которые бы показывали секунд или метров. Реальные часы показывают реальное время, например t = 7сек. Поэтому член (время) всегда противоположен по знаку (расстоянию). Никакими закручиваниями и поворотами никогда не удастся заставить оба знака совпасть друг с другом” (14).Аналогичную точку зрения по поводу мнимой единицы высказывает Э.Шмутцер: “…с помощью искусственного приема – введения мнимой единицы i - мы чисто формально наделяем время теми же качествами, что и пространство. Это дает возможность обобщить понятие вращения в трехмерном пространстве на четырехмерное пространство. Впрочем, это чисто математический трюк, за которым не кроется никакого физического смысла, но который оказывается полезным для некоторых целей” (21). Уравнения физики (волновая функция Шредингера (11), античастицы П.Дирака (11), теория физического вакуума Г.И.Шипова (22) и другие) вынужденно включают мнимую единицу, связывая с ней вероятностные характеристики движения. Представляется, что вероятностная трактовка не снимает проблем физической интерпретации мнимых и комплексных чисел в физике.
1.5. Философия, математика, диалектика. Математика, долгое время развивавшаяся в направлении узкой специализации, в самой себе, сегодня нуждается в синтезе и диалектической классификации математического знания, обслуживающего естественнонаучные исследования. Здесь уместно вспомнить о попытках Ф.Энгельса в “Диалектике природы” провести классификацию форм движения материи и соответственно классификацию наук, изучающих эти формы, опираясь на исследование диалектического содержания математики, механики, физики, химии, биологии (23). При этом Энгельс в математике выделял проблему кажущейся априорности математических абстракций: “Так называемые аксиомы математики – это те немногое мыслительные определения, которые необходимы в математике для исходного пути… Спенсер прав в том отношении, что кажущаяся нам самоочевидность этих аксиом унаследована нами. Они доказуемы диалектически, поскольку они не чистые тавтологии” (23). Иначе, Ф.Энгельс указывает на то, что в простых числовых величинах (1;-1;
; 0), и в простых операциях (сложение, вычитание, умножение и деление), скрыты априори очевидные законы диалектики: закон единства и борьбы противоположностей, закон перехода количественных изменений в качественные, закон диалектического отрицания. Очевидность этих законов в действительности является естественной способностью человеческого сознания, а, следовательно, и естественной способностью диалектического отражения природы человеком.Развитие естествознания сегодня требует философско-математического переосмысления таких системообразующих категорий как “относительное” и “абсолютное”. Требуется внедрение новых идей в понимание систем отсчета пространства-времени, неотделимых от движения самой материи. Накопленные в различных областях знания, а так же множество конструктивных идей в “пограничных зонах” смежных областей знаний, еще не получивших статуса научного, позволяют надеяться на возможность разработки геометрических моделей, способных объективно отражать законы движения в простой, классической форме, естественной для чувственного человеческого восприятия.
2. ПРИНЦИП СИММЕТРИИ
“Насколько я могу судить, все априорные утверждения физики имеют своим источником симметрию”