Б) i ;
; i ; i ) - расширение из сжатого состояния после равновесия при = , при касательной угловой скорости расширения;В) ( i ; i ;
; i ) - сжатие из растянутого состояния до равновесия при = , при нормальной угловой скорости сжатия;Г) ( i ; i
; i ; )- сжатие из растянутого состояния после равновесия при = , при касательной угловой скорости сжатия.В каждый момент масса (сфера) будет представлена новой величиной объема и новой величиной плотности (единой по всему объему). Предельные характеристики плотности и, соответственно, предельные характеристики объема реализуются при
=1 и =0. Среднее значение объема и плотности реализуются при = . Пространственные механические перемещения маятника здесь представляются колебаниями плотности, т.е. связаны с изменением субстанциональных свойств пробной массы.В условиях значительных по размерам масс, колебания в форме математического маятника возможно будут затухающими, в связи с проявлением локальных (негармонических) колебаний плотности (сферические области различной плотности), которые будут противодействовать инерции, тормозить колебания, что, в конечном счете, должно привести массу к среднему состоянию покоя при
= .6.3. Гармонические синусоидальные колебания плотности массы . В связи с максимальным энергетическим потенциалом кручений, при
= потенциальное состояние покоя положительной и отрицательной плотности не достижимо. Следствием разрешения этого противоречия будет самовозбуждение гармонических колебаний (сферических волн) сопровождающихся расслоением плотности (чередующиеся сферы положительной и отрицательной плотности) при сохранении нулевого результирующего момента. Колебания могут начаться самопроизвольно, нарастать и, при сохранении нулевого результирующего момента (при симметричном возрастании положительной и отрицательной плотности), осуществляться в условиях стационарного объема (Vcт).В условиях Vcт, центр и оболочка сферы пробной “массы-вселенной”(как мнимые, “внешние” границы) будут подобны отражателям волн сжатия-растяжения (защемленная с двух концов стоячая волна) и стимулировать процесс колебания в режиме ускорения и самосинхронизации. Колебания в каждом слое будет протекать в четырех фазах (математический маятник). Колебания в условиях расслоения плотности вероятно будут связаны с изменением температур (сжатие +Т, растяжение -Т), проявлением электромагнетизма и термодинамических эффектов (типа четырехтактного цикла Карно (23), способствуя развитию процесса расслоения вакуума. Механические, электромагнитные и термодинамические эффекты будут проявляться в неотделимой, друг от друга, форме.
Графики колебаний относительных нормальных и касательных моментов в соприкасающейся плоскости имеют синусоидальную форму (примерно как на рис.5). При нарастании возбуждения, актуализации потенциальных энергий положительной и отрицательной плотности в кинетические, будет возрастать частота, сокращаться длина волн (расширение расслоения). При превращении всей потенциальной энергии в кинетические (
, , ), средняя суммарная угловая скорость областей положительной и отрицательной плотности соответствуют условию = , т.е. состоянию покоя, соответствующего средней плотности и среднему объему невозбужденной массы; экстремальные значения скорости в областях положительной и отрицательной плотности равны светоподобному интервалу; расслоение достигает максимума; возбужденная масса доведена до состояния "кипения".В этой стадии вакуум, будет подобен расслоенной сфере (одновременно растянутой и сжатой), что в условиях достижения экстремума напряжения, возможно, обеспечивает одновременный разрыв (взрыв по всему объему, или два противоположных взрыва – в направлении расширения и в направлении сжатия). Каждой точке разрыва на “синусоиде” будет свойственна свое значение скорости. Появившиеся в момент разрыва дискретные образования (локальные вихри) консервируют свою скорость как индивидуальную характеристику, а в совокупности, по всей “синусоиде”, актуализируя одновременно весь диапазон угловых скоростей, которые при математическом колебании проявляются только в последовательной форме, т.е. изолированно друг от друга. Очевидно также, что сжатые и растянутые сферические области будут разграничены сферическими областями невозбужденного вакуума со средними характеристиками плотности, объема, скорости. Аналогично, внешняя граничная сфера и область центра сферической массы “пробной вселенной” будут также представлены невозбужденным “покоящимся” вакуумом. Если в первом случае покоящийся вакуум может быть представлен особыми квантами при дальнейшем процессе образования дискретных вакуумных структур, то во втором, вакуум в чистом виде (внешняя оболочка сферы и центр) останется при любых последующих превращениях. Внешняя оболочка и центр возможно влияют на кривизну пространства, создают специфическое вакуумное поле кручений, определяя пространственную целостность возбужденного образования (абсолютной системы отсчета).
6.4. Эволюция вещества. Разрывы и процессы квантования могут происходить или при переходе от сжатия к расширению (в сферах +р) и наоборот от расширения к сжатию (в сферах –р) т.е. в экстремальных значениях плотности в момент смены направления кручений (с левого на правый и наоборот) и мгновенной остановки движения, или в состоянии равной и средней по всему объему плотности (где расслоение представлено различными угловыми скоростями в отношениях синусоидального графика), т.е. в момент изменения знака плотности энергии). Вероятно, что первая фаза разделения происходит в состоянии средней плотности, где достигается максимум кинетических скоростей и, соответственно, максимум кинетических энергий, а квантованный вакуум закрепляет равные порции массы для всех значений скорости.
В момент разрыва возможно образование симметричных вихрей с последующим взаимным захватом двух зеркальных вихрей и образованием вихревых дуплетов, или двухвихревых ”фитонов” (по А.Акимову, 22). При этом дуплеты будут закреплять собой элементы системы отсчета (осевые моменты) фиксируя присущее им в момент образования “индивидуальные” значения угловой скорости.