Смекни!
smekni.com

Теория вероятностей и математическая статистика (стр. 7 из 17)

Модуль 4.Числовые характеристики случайных величин и векторов

Цель модуля: На основе расширения понятия интеграла как интеграла от непрерывной функции по вероятностной мере определить понятия числовых характеристик. Показать на основе механической и геометрической интерпретации распределения вероятностной меры вероятностный смысл числовых характеристик. Научиться вычислять значения числовых характеристик и понимать их роль в изучении особенностей законов распределения случайных величин.

Использование определения интеграла Римана-Стилтьеса от непрерывной функции
по вероятностной функции P позволяет в единой форме и независимо от типа случайной величины
, определять:

а) законы распределения функций случайных величин;

б) значения различных числовых характеристик случайных величин.

И в определении интеграла Римана, и в определении интеграла Римана-Стилтьеса область Q

W, по которой производится интегрирование, разбивается на отрезки
В определении интеграла Римана при составлении интегральных сумм Дарбу используется мера Лебега – длина этих отрезков:
. В определении интеграла Римана-Стилтьеса при составлении интегральных сумм, аналогичных суммам Дарбу, используется вероятностная мера этих отрезков:
. В зависимости от типа вероятностной функции P интеграл Римана-Стилтьеса есть или сумма числового ряда, или определённый интеграл Римана.

Закон распределения случайной величины, записанный в одной из его форм с помощью вероятностной функции P или с помощью функции распределения

, даёт нам всю информацию об исследуемой случайной величине
. Числовые характеристики дают меньше информации о характере распределения возможных значений случайной величины
, но в них аккумулированы наиболее характерные её свойства, которые позволяют нам судить о некоторых важнейших особенностях случайной величины. Такими характеристиками являются начальные и центральные моменты случайной величины, а так же – функции от них.

Наиболее употребительными числовыми характеристиками являются математическое ожидание – среднее значение случайной величины и дисперсия – мера рассеяния, разброса значений случайной величины около её математического ожидания.

Знание числовых значений математического ожидания и дисперсии служит задаче формулирования выводов о случайной величине и первичного представления о характере распределения её возможных значений.

При исследовании многомерной случайной величины, помимо математических ожиданий и дисперсий её компонент, рассматриваются ковариационные моменты, показывающие наличие и силу статистической связи между компонентами. Если статистические связи между компонентами имеют линейный характер, то в качестве оценки силы этой связи используется коэффициент линейной корреляции.

Функция регрессии, какого бы вида она ни была, описывает изменение значений условных математических ожиданий одной из компонент случайного вектора при изменении другой компоненты. То есть функция регрессии описывает изменение средних значений одной из случайных величин, когда другая случайная величина изменяется в области своих возможных значений.

Модуль 5. Классическая предельная проблема теории вероятностей

Цель модуля: Показать, что решение многих практических задач (в математике и механике, экономике и финансах, физике и химии, биологии и геологии и т.п.) базируется на основе знания законов распределения случайных величин, являющихся суммами большого числа независимых случайных величин – факторов. Знание результатов решения классической предельной проблемы позволит принимать план действий и делать обоснованные выводы при решении задач математической статистики.

В предельной проблеме теории вероятностей изучаются законы распределения случайных величин, являющиеся суммами случайных величин:

, когда число слагаемых неограниченно возрастает
. Проблема называется классической потому, что мы рассматриваем последовательности
только таких случайных величин, у которых существует конечный начальный момент второго порядка, то есть
.

Придерживаясь исторического аспекта в изложении предельной проблемы, сначала рассматриваем случайную величину, имеющую биномиальное распределение вероятностей

.

1) Если проводится большое число повторных независимых испытаний (n – велико), то решение практических задач проводится путём применения локальной и интегральной теорем Муавра-Лапласа, согласно которым:

, где
, где
.

, где
.

Суть этих теорем состоит в том, что при больших значениях n биномиальное распределение вероятностей хорошо аппроксимируется нормальным распределением N

. Причём с увеличением n точность аппроксимации возрастает.

То есть из интегральной теоремы Муавра-Лапласа следует, что для функции распределения случайной величины

будет справедливо:

, где
- функция распределения нормального закона N(0,1).

2) Случайная величина

есть относительная частота наступления события Aпри проведении n испытаний. Теорема Бернулли утверждает, что при неограниченном увеличении числа испытаний с вероятностью близкой к единице, то есть практически достоверно, можно утверждать, значения относительной частоты будут очень мало отличаться от p - вероятности наступления события A в одном испытании:

.

Суть этой теоремы состоит в том, что при неограниченном увеличении n относительная частота с вероятностью близкой к единице ведёт себя как постоянная величина p.

3) Если вероятность p наступления события A в одном испытании «очень мала», а проводится большое число испытаний то, согласно теореме Пуассона, хорошую аппроксимацию биномиального распределения вероятностей возможных значений случайной величины

можно получить, используя распределение Пуассона, то есть:

, где
.

Случайная величина

,
, является суммой n независимых бернуллиевских случайных величин
,
, каждая из которых есть результат проведения одного испытания,
. То есть:
. Так как
и
, то, заменив
, интегральную теорему Муавра-Лапласа можно переписать так:

.