Смекни!
smekni.com

Геометрии Галилея и Минковского как описания пространства-времени (стр. 11 из 14)

которая является окружностью с центром на оси OZ. В штрихованной системе координат OX'Y'Z' этот же изотропный конус описывается уравнением

.

Плоскость z' = h, перпендикулярная к оси OZ', тоже является собственно евклидовой плоскостью и пересекается с изотропным конусом по окружности

.

В собственно евклидовом пространстве конус, основанием которого служит круг, а вершина лежит на перпендикуляре к кругу, восстановленном из его центра, называется прямым круговым конусом. Упомянутый перпендикуляр является осью симметрии, и других осей симметрии прямой круговой конус не имеет. Прилагая этот образ к изотропному конусу, приходим к заключению, что всякая прямая, принадлежащая внутренней области изотропного конуса, является его осью симметрии. И подобно тому, как в двумерном псевдоевклидовом пространстве (плоскости) мы имеем право изобразить любую пару взаимно перпендикулярных прямых под углом

на собственно евклидовой плоскости рисунка, так в отображении трехмерного псевдоевклидова пространства на собственно евклидово трехмерное пространство мы имеем право изображать любую ось OZ в виде перпендикуляра к плоскости OXY, а изотропный конус – в виде прямого кругового конуса в этой системе координат.

2.2.4 Четырехмерный мир Минковского. Гиперплоскости

На основе четырехмерного линейного пространства могут быть построены различные типы псевдоевклидовых пространств. Если среди четырех векторов базиса

,
,
,
этого пространства один вектор имеет длину, выражаемую мнимым числом, а длины остальных трех векторов выражаются вещественными числами, то такому пространству присваивается индекс 1. Умножив на мнимую единицу длины всех базисных векторов четырехмерного псевдоевклидова пространства индекса 1, получим пространство индекса 3, имеющее по существу такие же метрические свойства. Герман Минковский понял, что реальное мировое пространство обладает такими же линейными и метрическими свойствами, как псевдоевклидово четырехмерное пространство индекса 1. Для краткости мы будем называть его также пространством Минковского. Желая принять во внимание не только геометрические свойства, но и физические объекты и процессы в мировом пространстве, мы будем пользоваться термином «мир Минковского».

Ортонормированный базис в четырехмерном псевдоевклидовом пространстве индекса 1 будем характеризовать следующей таблицей скалярных произведений векторов:

(2.33)

Таблица (2.33) говорит о том, что любые два различных вектора в этом базисе взаимно перпендикулярны, а длины их имеют следующие значения:

(2.34)

Запишем разложения произвольных векторов а и b пространства Минковского по ортонормированному базису

,
,
,
:

(2.35)

и вычислим скалярное произведение

<а, Ь> с учетом таблицы (2.33):

. (2.36)

По общему определению – модуль вектора есть корень квадратный из скалярного произведения вектора на самого себя. В пространстве Минковского модуль вектора выражается через его координаты следующим образом:

. (2.37)

Выберем в пространстве одну точку в качестве полюса О. Совокупность ортонормированного базиса, характеризуемого таблицей (2.33), и полюса О образует ортонормированную систему координат OXYZW. Координаты радиус-вектора

в этой системе будем обозначать буквами х, у, z, w и называть координатами точки М, указываемой концом радиус-вектора:

(2.38)

Рассмотрим, что представляет собой множество точек в четырехмерном пространстве Минковского, у которых радиус-векторы перпендикулярны к базисному орту

(к оси OW). От векторной записи этого условия перпендикулярности

перейдем к координатному выражению


(2.39)

Здесь ясно видно, что условием перпендикулярности радиус-вектора

к базисному орту
является равенство нулю четвертой координаты вектора. При этом три первые его координаты х, у, z могут принимать независимо друг от друга любые значения от
до
. Но множество всевозможных линейных комбинаций вида

образует трехмерное пространство. Таким образом, геометрическое место точек в четырехмерном пространстве, описываемое уравнением (2.39), представляет собой трехмерное пространство, а так как любой принадлежащий ему вектор перпендикулярен к базисному вектору

, то говорят, что это трехмерное пространство в целом перпендикулярно к направлению
(к оси OW).

Мы не станем делать попытку наглядно изобразить четырехмерное пространство. Можно, конечно, построить некоторый условный чертеж четырех координатных осей, но вряд ли это придаст наглядность геометрическим объектам, которых мы не воспринимаем зрительно. Мы никогда не видели трехмерное пространство «извне» и не представляем, куда направлен перпендикуляр к трехмерному пространству. Лучше избрать другой путь. В аналитических соотношениях, описывающих геометрические объекты четырехмерного мира в векторной или координатной форме, нетрудно заметить сходство с аналитическим описанием знакомых нам объектов трехмерного мира. Вот этими наглядными образами из трехмерного мира мы и будем пользоваться как подспорьем, облегчающим формирование представлений о четырехмерном мире на основе математических формул. Например, уравнение вида (2.39) описывает в случае трехмерного пространства плоскость, перпендикулярную к оси координат W. Но плоскость является двумерным множеством точек, а мы теперь должны иметь дело с трехмерным множеством, описываемым уравнением (2.39). Чтобы подчеркнуть сходство этого множества с плоскостью и отличие от нее, его называют гиперплоскостью. Базис плоскости состоит из двух векторов, базис гиперплоскости в четырехмерном пространстве состоит из трех векторов. В частности, для гиперплоскости (2.39) базисом являются векторы

,
,
, входящие в состав ортонормированного базиса четырехмерного пространства Минковского. Поскольку длины этих трех векторов выражаются вещественными числами, приходим к заключению, что гиперплоскость (2.39) несет на себе собственно евклидову метрику, т.е. является хорошо знакомым нам трехмерным собственно евклидовым пространством.

Возьмем на оси OW какую-нибудь точку Р, отличную от точки начала координат О. Три первые координаты точки Р равны нулю, а четвертая отлична от нуля:

. Запишем координатный столбец радиус-вектора
точки Р:

Разность любого радиус-вектора

и радиус-вектора
есть связанный вектор, имеющий своим началом точку Р:

Те из векторов

, которые перпендикулярны к базисному орту
, удовлетворяют векторному уравнению