Смекни!
smekni.com

Геометрии Галилея и Минковского как описания пространства-времени (стр. 12 из 14)

Оно выражается в координатной форме следующим образом:

(2.40)

Как и в предыдущем примере, условие перпендикулярности векторов

к оси OW свелось к обращению в нуль их четвертой координаты
, а три первые координаты х, у, z этих векторов могут принимать любые значения. Точки, указываемые концами векторов
, подчиненных условию (2.40), образуют трехмерное множество, которое тоже является гиперплоскостью, перпендикулярной к оси OW. В гиперплоскости (2.40) нет ни одной точки гиперплоскости (2.69), так как у всех точек гиперплоскости (2.39) четвертая координата w равна нулю и эти точки не могут удовлетворять уравнению (2.40). Значит, гиперплоскости (2.39) и (2.40) не пересекаются, и их следует назвать взаимно параллельными. Подобно тому как мы представляем трехмерное пространство состоящим из параллельных плоских слоев, или в виде бесконечного множества параллельных плоскостей, нанизанных на перпендикулярную к ним прямую, так следует представлять четырехмерное пространство в виде бесконечного множества взаимно параллельных гиперплоскостей (трехмерных пространств), нанизанных на перпендикулярную к ним ось OW.

Рассмотрим теперь множество радиус-векторов, перпендикулярных к базисному орту

, (к оси ОХ). В векторной форме это условие перпендикулярности выражается уравнением

а в координатной форме принимает следующий вид:


(2.41)

У радиус-векторов рассматриваемого множества первая координата равна нулю, а три другие координаты могут принимать независимо одна от другой произвольные значения от

до
. Множество всех линейных комбинаций

представляет трехмерное пространство (гиперплоскость), в котором линейно независимые векторы

,
,
играют роль базиса. Так как длины векторов
и
выражаются вещественными числами, а длина вектора
– мнимым числом, заключаем, что гиперплоскость (2.41) несет на себе псевдоевклидову метрику, т.е. представляет такое же трехмерное псевдоевклидово пространство, как описанное в предыдущей главе.

Нетрудно показать, что множество точек, у которых радиус-векторы перпендикулярны к базисному орту

, представляет псевдоевклидову гиперплоскость OXZW с базисом
,
,
, описываемую уравнением
. Уравнению z = 0 соответствует в четырехмерном пространстве Минковского псевдоевклидова гиперплоскость OXYW с базисом
,
,
, перпендикулярная к координатной оси OZ.

Рис. 5.


Теперь понятно, почему условное изображение координатной системы OXYZW в виде четырех осей (рис. 5) практически бесполезно для создания наглядного представления о четырехмерном пространстве. Такой рисунок не помогает нам увидеть какую-либо гиперплоскость как трехмерное пространство, вне которого существуют другие трехмерные пространства. Мы сможем увидеть в лучшем случае лишь четыре плоскости OXY, OYZ, OZW, OXW, а не координатные гиперплоскости. Каждая из указанных плоскостей представляет лишь пересечение двух координатных гиперплоскостей. Например, гиперплоскость

(OXYZ) пересекается с гиперплоскостью
(OYZW) по плоскости OYZ. Действительно, гиперплоскости
принадлежат все радиус-векторы, являющиеся линейными комбинациями вида

,

где х, у, z – любые вещественные числа. Гиперплоскость х = 0 представляет множество радиус-векторов, являющихся линейными комбинациями вида

,

где у, z, w – любые вещественные числа. Обеим гиперплоскостям принадлежат лишь те радиус-векторы, которые являются линейными комбинациями вида

Но множество таких радиус-векторов и есть плоскость, параллельная базисным ортам е2, е3 и проходящая через точку О, ч. е. плоскость OYZ.

Рис. 5 демонстрирует замечательную черту четырехмерного мира, о которой мы не имеем представления в мире трехмерном. Плоскости OYZ и OXY, изображенные на рис. 5.пересекаются по прямой OY, что для нас привычно. Но плоскость OYZ пересекается с плоскостью OXW в одной-единственной точке О. Представить наглядно этот удивительный факт мы не можем, но в справедливости его легко убедиться аналитическим путем. Различие этих двух случаев пересечения плоскостей связано с тем, что плоскости OYZ и OXY принадлежат одному и тому же трехмерному пространству (гиперплоскости OXYZ), а плоскости OYZ и OXW не умещаются в одном трехмерном пространстве (принадлежат различным гиперплоскостям).

Согласно (2.36) длина радиус-вектора (2.37) равна

(2.42)

Она обращается в нуль, если координаты радиус-вектора удовлетворяют условию

, или
. (2.43)

Соотношение (2.43) определяет в четырехмерном псевдоевклидовом пространстве индекса 1 геометрическое место точек, радиус-векторы которых являются изотропными. Что представляет собой это геометрическое место точек?

Прежде всего, замечаем, что уравнение (2.43) по своей структуре похоже на уравнение (2.24) изотропного конуса в трехмерном псевдоевклидовом пространстве. За формальным сходством этих уравнений обнаруживается глубокое геометрическое родство описываемых ими объектов. Рассмотрим пересечение геометрического места точек (2.43) с координатной гиперплоскостью UYZW:

. (2.44)

Гиперплоскость OYZW является трехмерным псевдоевклидовым пространством, а уравнение (2.44) представляет изотропный конус этого пространства. Аналогичным образом пересечения геометрического места точек (2.43) с двумя другими псевдоевклидовыми координатными гиперплоскостями OXYW и OXZW являются изотропным конусами этих гиперплоскостей:

.

Но с собственно евклидовой координатной гиперплоскостью OXYZ множество точек, удовлетворяющих уравнению (2.43), пересекается в одной-единственной точке:

Это точка начала координат, служащая вершиной трех рассмотренных выше изотропных конусов в псевдоевклидовых координатных гиперплоскостях.

Естественно считать множество точек, удовлетворяющих уравнению (2.43), обобщением конической поверхности на случай большего числа измерений и назвать его изотропным гиперконусом. Гиперконус представляет трехмерное множество точек в четырехмерном пространстве, аналогичное двумерной конической поверхности в трехмерном пространстве.

Продолжая аналогию между изотропным конусом и изотропным гиперконусом, назовем внутренней областью гиперконуса (2.43) множество точек, координаты которых удовлетворяют условию

или
.