Смекни!
smekni.com

О теории вероятностей (стр. 1 из 9)

1. Предмет и основные понятия ТВ

ТВ – математическая наука изучающая закономерность в массовых однородных случаях, явлениях и процессах.

Элементарные события – это простейшие не разложимые результаты опыта. Вся совокупность элементарных событий – пространство элементарных событий.

Под опытом в ТВ понимается выполнение некоторого комплекса условий в результате которого происходят или не происходят некоторые события – факты.

Событие в ТВ – это любое конечное или счетное подмножество пространства W.

Три типа событий:

· Достоверные

· Случайные

· Невозможные.

События являются несовместными если они не могут происходить одновременно и наоборот.

Элементы последовательность попарно несовместны, если любые два из них попарно несовместны.

Несколько событий равновозможные, если ни одно из них не имеет объективного преимущества перед другим. События образуют полную группу если в результате опыта ничего кроме этих событий не может произойти.

Алгебра событий.

1) Суммой двух событий А + В = АÈВ называется такое третье событие которое заключается в наступлении хотя бы одного из событий А или В (или).

2) Произведением двух событий А*В = АÇВ называется такое третье событие, которое заключается в наступлении двух событий одновременно (и).

3) Отрицанием события А является событие `А, которое заключается в ненаступлении А.

4) Если наступление события А приводит к наступлению события В и наоборот, то А=В.

Пусть множество S – это множество всех подмножеств пространства всех элементов W для которых выполняются следующие условия:

1. Если АÎ S, B Î S, то A+B = AÈB Î S

2. Если АÎ S, B Î S, то А*В = АÇВ Î S

3. Если АÎ S, то `А Î S.

Тогда множество S называется алгеброй событий.

При точном подходе достаточно одного из этих свойств, так как каждое из них следует из другого.

При расширении операции сложения и умножения, на случай счетного множества событий, алгебра событий называется бролевской алгеброй.

2. Определение вероятности события.

Аксиоматическое определение вероятности.

Вероятность события – это численная мера объективной возможности его появления.

Аксиомы вероятности:

· Каждому событию А ставится в соответствие неотрицательное число р, которое называется вероятностью события А. Р(А)=р ³ 0, где АÎ S, SÍW.

· Р(W) = 1, где W - истинное (достоверное) событие.

Аксиоматический подход не указывает, как конкретно находить вероятность.

Классическое определение вероятности.

Пусть событие А12, …, Аn Î S (*) образуют пространство элементарных событий, тогда событие из * которое приводит к наступлению А, называют благоприятствующими исходами для А. Вероятностью А называется отношение числа исходов благоприятствующих наступлению события А, к числу всех равновозможных элементарных исходов.

(А)= m(A)
Рn

Свойства вероятности:

1. 0 £ Р(А) £ 1,

2. Р (W) =1,

3. Р (`W) = 0.

Статическое определение вероятности.

Пусть проводится серия опытов (n раз), в результате которых наступает или не наступает некоторое событие А (m раз), тогда отношение m/n, при n®¥ называются статистической вероятностью события А.

Геометрическое определение вероятности.

Геометрической вероятностью называется отношение меры области, благоприятствующей появлению события А, к мере всей области.


3. Интегральная функция распределения и ее свойства

Для непрерывной случайной величины X вероятность Р(Х= xi)→0, поэтому для НСВ удобнее использовать вероятность того, что СВ Х<хi, где хi- текущее значение переменной. Эта вероятность называется интегральной функцией распределения: P(X<xi)=F(x).

Интегральная функция является универсальным способом задания СВ (как для ДСВ, так и для НСВ).

Свойства интегральной функции распределения:

1) F(x) не убывает (если х2>x1, то F(x2)≥Р(х1));

2). F(-∞)=0;

3). F(+∞)=1;

4) вероятность попадания СВ X в интервал а<Х<b определяется по формуле

P(a≤X<b)=F(b)-F(a).

Замечание. Обычно для определённости левую границу включают в интервал, а правую нет. Вообще для НСВ верно, что

Р(а≤Х<b)= Р(а <Х≤b) =Р(а<Х < b)= Р(а≤X≤b).

4. Основные теоремы теории вероятностей

Теорема1.

Вероятность суммы двух несовместных событий А и В равна сумме их вероятностей:


Р(А+В)=Р(А)+Р(В).

Следствие1.

Если А12, …, Аn - попарно несовместные события, то вероятность их суммы равна сумме вероятностей этих событий.

Следствие2.

Вероятность суммы попарно несовместных событий А12, …, Аn , образующих полную группу, равна 1.

Следствие3.

События А и `А несовместны и образуют полную группу событий, поэтому

Р(А +`А) = Р(А) + Р(`А) = 1. Отсюда Р (`А) = 1 – Р(А).

Теорема2.

Вероятность суммы двух совместных событий А и В равна сумме вероятностей этих событий без вероятности их произведения:

Р (А+В) = Р(А)+Р(В) – Р (А*В).

Два события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого (в противном случае события зависимы).

Теорема3.

Вероятность произведения двух независимых событий равна произведению их вероятностей Р(А*В)=Р(А)*Р(В).

Следствие.

Вероятность произведения n независимых событий А12, …, Аn равна произведению их вероятностей.

Условной вероятностью события В при условии, что событие А уже произошло, называется число Р(АВ)/Р(А)=Р(В/А)РА(В).

Теорема4.

Вероятность произведения двух зависимых событий А и В равна произведению вероятности наступления события А на условную вероятность события В при условии что событие А уже произошло:

Р(А*В) =Р(А)*Р(В/А).

Следствие.

Если события А и В независимы, то из теоремы 4 следует теорема 3.

Событие В не зависит от события А, если Р(В/А) = Р(В). Теорему 4 можно обобщить на n событий.

Теорема5.

Вероятность произведения n зависимых событий А12, …, Аn равна произведению последовательных условных вероятностей:

Р(А12*…*Аn-1*An)= P(A1)*P(A2/A1)*...*P(An/A1*A2*...*An-1).

Теорема6.

Вероятность наступления хотя бы одного из событий А12, …, Аn равна разности между единицей и вероятностью произведении отрицаний событий А12, …, Аn :

Р(А)=1-Р(`А1*`А2*…*`Аn)=1- P(`A1)*P(`A2/`A1)*...*P(`An/`A1*`A2*...*`An-1).

Следствие1.

Вероятность наступления хотя бы одного из событий А12, …, Аn независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий:

Р(А)=1-Р(`А1)Р(`А2)…Р(`Аn).

Следствие2.

Если события А12, …, Аn независимы и имеют одинаковую вероятность появиться (Р(А1)=Р(А2)=…Р(Аn)= р, Р(Аi)= 1-р=q ), то вероятность появления хотя бы одного из них равна Р(А)=1-qn .

5. Формулы полной вероятности и вероятности гипотез

Пусть событие А может наступать только одновременно с одним из попарно несовместных событий Н1, Н2, ..., Нn, образующих полную группу. Тогда вероятность события А определятся по формуле полной вероятности:

Р(А) = Р(Н1)*P(А/Н1) + Р(Н2)*Р(А/Н2) +...+ Р(Нn)*Р(А/Нn), или Р(А)= Σ Р(Нi)*Р(А/Нi),

где события Н12, ...,Нn, - гипотезы, a P(A/Hi) - условная вероятность наступления события А при наступлении i-ой гипотезы (i=1, 2,..., n).

Условная вероятность гипотезы Нi при условии того, что событие А произошло, определяется по формуле вероятности гипотез или формуле Байеса (она позволяет пересмотреть вероятности гипотез после наступления события А):

Р(Нi/А)=(P(Hi)*P(A/Hi))/P(A).


6. Формула Бернулли

Пусть некоторый опыт повторяется в неизменных условиях n раз, причём каждый раз может либо наступить (успех), либо не наступить (неудача) некоторое событие А, где Р(А) = р - вероятность успеха, Р(А)=1-р= q - вероятность неудачи. Тогда вероятность того, что в к случаях из n произойдёт событие А вычисляется по формуле Бернулли

Pn(K) = Ckn-pk-qn-k.

Условия, приводящие к формуле Бернулли, называются схемой повторных независимых испытаний или схемой Бернулли. Так как вероятности Рn(к) для раз личных значений к представляют собой слагаемые в разложении бинома Ньютона

(p+q)n=C0n*p0*qn+C1n*p1*qn-1+…+Ckn*pk*qn-k+…+Cnn*pn*q0,

то распределение вероятностей Pn(k), где 0≤k≤n, называется биноминальным.

Если в каждом из независимых испытаний вероятности наступления события А разные, то вероятность наступления события А к раз в n опытах определяется как коэффициент, при к-ой степени полинома

φn(Z)=Π(qi+piZ)=anZn+an-1Zn-1+…+a1Z1+a0, где φn(Z) - производящая функция.

Невероятнейшее число наступивших событий в схеме Бернулли - ко0 c К) определяется из следующего неравенства: np-q≤k0≤np+p.


7. Локальная формула Муавра-Лапласа

Если npq>10 , то

где вероятность р отлична от 0 и 1 (р→0,5), х =(k-np)/√npq.

Для облегчения вычислений функция

представлена в виде таблицы (прил.1).

φ(х) - функция вероятности нормального распределения (рис. 6) имеет следующие свойства:

1) φ(х)-четная;

2) точки перегиба х = ± 1;

3) при х≥5, φ(х)→0, поэтому функция φ(х) представлена в виде таблицы для 0≤х≤5 (прил.1).