1) несовпадение ритмов производства с ритмами потребления;
2) случайные колебания спроса за период между поставками;
3) случайные колебания интервала между поставками;
4) срыв объема поставок.
То есть появляется случайная составляющая в целевой функции оптимизации эффективности производства.
Предпосылки, которые заставляют оптимизировать запасы сырья, ресурсов:
1) возрастают убытки за счет хранения сверхнормативных запасов;
2) связывание оборотных средств;
3) потеря в качестве материальных ресурсов, моральное и физическое старение ресурсов.
В качестве целевой функции в задачах управления запасами выступают суммарные затраты на:
1) приобретение продукции с учетом максимальных скидок на размер партии;
2) затраты на хранение и складские операции;
3) от материального и морального старения при хранении;
4) потери от дефицита и штрафных санкций.
Целевая функция, представляющая сумму данных компонентов, должна быть min. Поэтому управление запасами производится в начале путем выбора стратегии в пространствестратегий управления, а затем путем выбора параметров в прострастве параметров управления.
Запасы делятся на:
1) текущие (обеспечивают ритм производства на определенном интервале времени);
2) страховые (на случай срыва ритма поставок).
Из параметров управления запасами принято выделять:
1) управляемые параметры
- объем и номенклатура необходимого сырья (ресурсов);
- момент (время) выдачи заказа на пополнение ресурса;
2) неуправляемые параметры
- затраты на организацию снабжения;
- ограничение на запасы поставщика;
- выбор системы снабжения (централизованная, децентрализованная)
Качественно систему снабжения можно представить графически:
Р – затраты на функционирование системы снабжения;
1 – затраты на размещение заказов;
2 – затраты на хранение данных ресурсов;
3- суммарные затраты на функционирование системы снабжения;
q* - оптимальный размер (объем) заказа сырья.
6.2. Классификация систем снабжения и их моделей.
Признак | Тип модели | |
I | По типу системы снабжения | 1. эшелонированные (многоэтапные)2. децентрализованные |
II | По числу хранимого сырья | 1. многокомпонентные2. однокомпонентные |
III | По спросу | 1. детерминированная:· дискретная· непрерывная2. случайная (вероятностная):· дискретная· непрерывная |
IV | По способу поставки сырья | 1. мгновенная2. с фиксированным временем задержки3. со случайным временем задержки |
V | По видам затрат и способам их отражения в модели | 1. линейная2. нелинейная |
VI | По ограничениям системы снабжения | 1. по объему2. по весу3. по площади4. по себестоимости5. по числу поставщиков |
VII | По принятой стратегии управления | 1. периодические (с периодом контроля Т)2. по критическим уровням и объему.Н – верхний уровень;n – нижний уровень запасов;q – объем партии (поставок). |
6.3. Стратегия управления запасами.
Оптимальное управление запасами – выбор таких объемов и моментов поставок, когда суммарные издержки на функционирование системы снабжения будут минимальными.
Простейшие стратегии:
1) периодические (со временем контроля Т);
2) по критическим уровням (H, h, yi – текущий уровень запаса q).
1. Стратегия постоянного уровня.
В данном случае через каждый интервал контроля Т запас пополняется до верхнего уровня.
q1¹ q2¹ q3¹ constq* опт = H – yтек
y1,2 – текущие уровни
2. Стратегия фиксированного объема поставок.
Q* = const
q1 = q2 = q3 = const
3. Стратегия с контролем за текущим уровнем.
a) если y<h, то: - y<hÞq* = const
- y³hÞq* = 0 (не заказываем сырье)
b) если y<h, то: - y<hÞq* = H – yтек
- y ³ h Þ q* = 0
6.4. Детерминированная ЭММ управления запасами с фиксированным спросом.
Данная модель называется моделью экономики выгодных размеров поставок.
Начальные условия (ограничения):
1. Известны моменты поступления заявок.
2. Интенсивность расходования ресурсов (скорость).
3. Поставки мгновенны.
4. Отсутствие дефицита.
Введем обозначения:
b - интенсивность спроса;
k – затраты на оформление;
h – затраты на хранение единицы продукции в единицу времени;
q – объем поставок (размер партии сырья).
- период времени, в течение которого полностью расходуется сырье.F(q) – суммарные затраты на функционирование системы снабжения
q/2 – оптимизация ведется по среднему уровню;
q* - оптимальный размер заказа.
Для нахождения F* нужно взять частную производную целевой функции F(q) по оптимизационному параметру q.
Из данной формулы находим q*:
формула Уилсона (оптимального заказа).Данный заказ необходимо разместить для выполнения через время
Оптимальные затраты можно определить по формуле
- это затраты на единицу продукции.6.5. Модель управления запасами при случайном спросе.
В данном случае интенсивность расходования ресурсов b - величина случайная со своим законом распределения, то есть известно P(b), F(b) , тогда в данной ситуации возможны случаи:
1)
q - b> 02)
3) h – затраты на хранение единицы продукции в единицу времени;
4) k – затраты на размещение (оформление) ресурсов, сырья.
Так как b - величина случайная, то ( q - b ) и (b - q) будут величины случайные, поэтому оптимизация и функция цели будут находится как для случайных величин.
Функция цели будет представлять собой математическое ожидание от суммы слагаемых. Одно из них представляет собой математическое ожидание затрат на размещение заказа; другое математическое ожидание затрат на хранение ресурсов.
Известно, что оптимальное размещение запасов можно найти из системы неравенств:
Методом линейной интерполяции определяется q*.
6.6. ЭММ управления запасами с ограничениями на складские помещения.
Данная модель многопродуктовая с n-видами сырья.
Введем обозначения для данной модели:
qi– размер объема заказа на сырье i – вида (
);А – максимальный размер складских помещений для сохранения n-видов продукции;
аi – размер площади, необходимой для хранения продукции i – вида;
bi – интенсивность спроса на сырье i – вида;
ki – затраты на размещение заказа на поставку сырья, продукции i – вида;
hi – затраты на сохранение единицы сырья (продукции) i – вида.
Данная модель от вышеизложенной отличается наличием ограничений на складские помещения и выглядит так:
qi / 2 – оптимизация по среднему уровню запасов
Данная ЭММ решается с помощью метода множителей Лагранжа. Полученная функция путем добавления в целевую функцию слагаемого, состоящего из системы ограничений и множителя l, называется Лагранжианом.
(*)Для того, чтобы найти qi* и оптимальное значение l*, необходимо взять частные производные по qi и l Лагранжиана (*).
(1) (2)из формулы (1) определяем
- оптимальный размер заказа.Оптимальный размер заказа при ограничении ai определяется путем последовательного расчета для разных значений qi и l. Методом линейной интерполяции по значениям, представленным в промежуточной таблице, находится коэффициент l и оптимальное значение qi*.
Тема 7. ЭММ систем массового обслуживания.
7.1. Основные понятия и определения.
Система массового обслуживания (СМО) – это совокупность приборов, каналов, станков, линий обслуживания, на которые в случайные или детерминированные моменты времени поступают заявки на обслуживание. Например, коммутаторы телефонных станций, супермаркет, парикмахерские.