является нормальной подгруппой в
и поэтому - нормальная подгруппа в группе . Это означает, что - группа типа (5).II.
.Пусть
- некоторая силовская -подгруппа группы , - некоторая силовская -подгруппа группы и - некоторая силовская -подгруппа группы , где - различные простые делители порядка группы . Пусть - произвольная нормальная максимальная подгруппа группы . Так как - разрешимая группа, то индекс подгруппы в группе равен некоторому простому числу. Пусть, например, индекс равен . Ввиду следствия , - либо нильпотентная подгруппа, либо ненильпотентная группа порядка .1. Предположим, что
- нильпотентная подгруппа. Пусть - силовская -подгруппа группы , - силовская -подгруппа группы и - силовская -подгруппа группы . Тогда . Так как и , то и - нормальные подгруппы в группе . Из того, что индекс подгруппы равен , следует, что и - силовские подгруппы группы и поэтому и . Понятно, что для некоторого имеет место и поэтому, не теряя общности, мы можем полагать, что . Следовательно, . Ясно, что не является нормальной подгруппой в группе .Если подгруппы
и нильпотентны, то и , и поэтому - нормальная подгруппа в группе . Значит, подгруппы и не могут быть обе нильпотентными подгруппами. Следовательно, возможны следующие случаи.а)
и - группы Шмидта.Так как
, то ввиду следствия , - подгруппа простого порядка и - циклическая подгруппа, которая не является нормальной в группе , но максимальная подгруппа группы нормальна в . Аналогично видим, что - подгруппа простого порядка и - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в , и поэтому является группой типа (7).б) Одна из подгрупп
, является нильпотентной, а другая - группой Шмидта.Пусть например,
- группа Шмидта и - нильпотентная подгруппа. Из следствия следует, что - группа простого порядка , - циклическая группа и максимальная подгруппа из нормальна в . Так как - нильпотентная группа, то . Из того, что следует, что - нормальная подгруппа в группе . Значит, ввиду леммы , - нормальная максимальная подгруппа в группе и поэтому . Следовательно, - группа простого порядка .