Поскольку
- ненильпотентная группа, то в ней существует максимальная подгруппа , которая не является нормальной в . Тогда . Следовательно, - примитивная группа, которая удовлетворяет условиям леммы .I. Пусть
, где и - простые числа (не обязательно различные). Ввиду леммы , и .Так как
, то содержится в некоторой максимальной подгруппе группы . Пусть - произвольная максимальная подгруппа группы и - максимальная подгруппа группы . Ясно, что - -максимальная подгруппа группы . Следовательно, для любого подгруппы и перестановочны. Это означает, что . Поскольку , то либо , либо . Ясно, что первый случай не возможен. Следовательно, - единственная максимальная подгруппа группы , и поэтому - примарная циклическая группа. Ввиду произвольного выбора , - примарная циклическая группа.Пусть
. Тогда для некоторого . Пусть - силовская -подгруппа группы , - силовская -подгруппа группы и - силовская -подгруппа группы . Так как ,то
- группа порядка и . Из того, что факторгруппа сверхразрешима и подгруппа циклическая, следует, что - сверхразрешимая группа. Допустим, что - наибольший простой делитель порядка группы . Тогда и поэтому . Значит, и , противоречие. Если - наибольший простой делитель порядка группы , то рассуждая как выше видим, что и . Полученное противоречие показывает, что - наибольший простой делитель порядка группы . Значит, - нормальная подгруппа в группе . Если , то и , где - группа порядка , - -группа. Ясно, что - единственная -максимальная подгруппа в . Поскольку - неприводимая абелева группа автоморфизмов группы , то - циклическая группа и поэтому - циклическая группа. Следовательно, - группа типа (2).Пусть теперь
. Поскольку в группе все максимальные подгруппы примарны и цикличны, то и поэтому .II. Пусть
. Согласно лемме , , где - минимальная нормальная подгруппа в группе и либо , либо .1. Пусть
.Пусть
- силовская -подгруппа группы .