Смекни!
smekni.com

Классификация групп с перестановочными обобщенно максимальными подгруппами (стр. 3 из 32)

- класс всех сверхразрешимых групп;

- класс всех абелевых групп экспоненты, делящей
.

Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.

Пусть

- некоторый класс групп и
- группа, тогда:

-
-корадикал группы
, т.е. пересечение всех тех нормальных подгрупп
из
, для которых
. Если
- формация, то
является наименьшей нормальной подгруппой группы
, факторгруппа по которой принадлежит
. Если
- формация всех сверхразрешимых групп, то
называется сверхразрешимым корадикалом группы
.

Формация

называется насыщенной, если всегда из
следует, что и
.

Класс групп

называется наследственным или замкнутым относительно подгрупп, если из того, что
следует, что и каждая подгруппа группы
также принадлежит
.

Произведение формаций

и
состоит из всех групп
, для которых
, т.е.
.

Пусть

- некоторая непустая формация. Максимальная подгруппа
группы
называется
-абнормальной, если
.

Подгруппы

и
группы
называются перестановочными, если
.

Пусть

,
-подгруппы группы
и
. Тогда
называется:

(1)

-перестановочной с
, если в
имеется такой элемент
, что
;

(2) наследственно

-перестановочной с
, если в
имеется такой элемент
, что
.

Пусть

- максимальная подгруппа группы
. Нормальным индексом подгруппы
называют порядок главного фактора
, где
и
, и обозначают символом
.

Подгруппа

группы
называется
-максимальной подгруппой или иначе второй максимальной подгруппой в
, если в
найдется такая максимальная подгруппа
, в которой
является максимальной подгруппой. Аналогично определяют
-максимальные (третьи максимальные) подгруппы,
-максимальные подгруппы и т.д.

Введение

Подгруппы

и
группы
называются перестановочными, если
. Подгруппа
группы
называется перестановочной или квазинормальной в
, если
перестановочна с каждой подгруппой группы
.

Перестановочные подгруппы обладают рядом интересных свойств, чем был и вызван широкий интерес к анализу перестановочных и частично перестановочных подгрупп в целом. Изучение перестановочных подгрупп было начато в классической работе Оре, где было доказано, что любая перестановочная подгруппа является субнормальной. Подгруппы, перестановочные с силовскими подгруппами, впервые изучались в работе С.А. Чунихина . Отметим, что подгруппы такого типа были названы позднее в работе Кегеля

-квазинормальными. В 60-70-х годах прошлого столетия появились ряд ключевых работ по теории перестановочных подгрупп, которые предопределили основные направления развития теории перестановочных подгрупп в последующие годы. Уточняя отмеченный выше результат Оре, Ито и Сеп в работе доказали, что для каждой перестановочной подгруппы
группы
факторгруппа
нильпотентна. В другом направлении этот результат Оре получил развитие в работах Кегеля и Дескинса. Кегель доказал, что любая
-квазинормальная подгруппа является субнормальной и показал, что подгруппы, перестановочные с силовскими подгруппами, образуют решетку. Первый из этих двух результатов Дескинс обобщил следующим образом, если
порождается своими
-элементами и
-подгруппа
группы
-квазинормальна в
, то факторгруппа
нильпотентна. В этой работе Дескинс высказал предположение о том, что для квазинормальной в
подгруппы
факторгруппа
абелева. Отрицательное решение этой задачи было получено Томпсоном в работе.