Доказательство. Необходимость. Разрешимость группы
следует из теоремы . Предположим теперь, что не является нильпотентной группой. Пусть - максимальная подгруппа группы , которая не является нормальной в . Пусть и - максимальная подгруппа группы . Рассуждая как выше видим, что . Следовательно, , и - циклическая примарная группа. Пусть . Покажем, что . Допустим, что . Пусть - силовская -подгруппа группы и - максимальная подгруппа группы . Тогда - -максимальная подгруппа группы и, следовательно, по условию - подгруппа группы , что противоречит максимальности подгруппы . Отсюда следует, что .Достаточность очевидна. Следствие доказано.
[2.2]. Если в группе любая ее максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.
В дальнейшем нам потребуется следующая теорема.
[2.2]. Пусть - группа, - ее подгруппа Фиттинга. Если любая -максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .
Доказательство. Предположим, что данная теорема не верна, и пусть
- контрпример минимального порядка. Доказательство разобьем на следующие этапы.(1) - разрешимая группа.
Действительно, если
, то каждая -максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы . Тогда по следствию , каждая максимальная подгруппа группы сверхразрешима. Согласно известной теоремы Хупперта о разрешимости группы, в которой все собственные подгруппы сверхразрешимы, - разрешимая группа.Пусть теперь
. Так как условие теоремы справедливо для группы , то группа разрешима и поэтому - разрешимая группа.(2) Группа имеет единственную минимальную нормальную подгруппу
и ,
где - такая максимальная в подгруппа, что , и .
Так как класс всех разрешимых групп
с образует насыщенную формацию , то ввиду (1), и поэтому в группе существует единственная минимальная нормальная подгруппа . Из леммы вытекает, что , где - такая максимальная в подгруппа, что и . Покажем, что делит . Если не делит , то - -группа, и поэтому , что противоречит выбору группы . Итак, делит . Допустим, что . Тогда факторгруппа изоморфна подгруппе группы автоморфизмов . Так как группа абелева, то - сверхразрешимая группа, и поэтому . Полученное противоречие с выбором группы показывает, что .