Пусть
– произвольная циклическая примарная подгруппа факторгруппы . Рассмотрим произведение циклической подгруппы и произвольной силовской подгруппы . Ввиду леммы 3.1.9 существует примарный элемент такой, что . ПоэтомуАналогично проверяется перестановочность циклических примарных подгрупп из
с элементами силовского множества . Таким образом, для факторгруппы все условия леммы выполняются, а так как порядок факторгруппы меньше порядка группы , то по индукции факторгруппа будет дисперсивна по Оре.Пусть теперь
– наибольший простой делитель порядка группы и – силовская -подгруппа подгруппы . Так как дисперсивна по Оре, то подгруппа нормальна в и . Если – некоторый примарный -элемент из , то по условию леммы. Теперь нормальная подгруппа в и -холловская подгруппа из содержится в . Поэтому . Аналогично, , поэтому силовская -подгруппа группы нормальна в группе . По индукции факторгруппа дисперсивна по Оре, а так как – наибольший простой делитель порядка группы , то группа дисперсивна по Оре.Теорема доказана.
Пусть
и – подгруппы группы . Будем говорить, что квазинормальна в , если перестановочна с каждой подгруппой из . Тогда можно сформулировать следующий результат, вытекающий из леммы 3.2.1.Следствие 3.2.2. Пусть и – дисперсивные по Оре подгруппы группы такие, что . И пусть квазинормальна в и квазинормальна в . Тогда группа дисперсивна по Оре.
Теорема 3.2.3 Пусть , – сверхразрешимые подгруппы группы . И пусть и – силовские системы подгрупп и , и . Если циклические примарные подгруппы из –квазинормальны и циклические примарные подгруппы из –квазинормальны, то группа сверхразрешима.
Доказательство. Допустим, что теорема неверна. Тогда существует несверхразрешимая группа
наименьшего порядка, для которой все условия теоремы верны.Проверим, что если
– силовская система группы , то – силовская система факторгруппы . Пусть – силовская система группы и – нормальная подгруппа группы . Отметим, что по определению силовской системы для всех подгрупп из . Тогда в факторгруппе рассмотрим множество подгрупп . По лемме 3.1.4 является силовской подгруппой факторгруппы . Возьмём две произвольные подгруппы и из множества . Рассмотрим их произведение