Доказательство. Пусть
полунормальна в и . Так как , то по тождеству Дедекинда имеем . Пусть – наименьшая подгруппа из , для которой . Если – собственная подгруппа из , то . Поскольку , то – подгруппа группы , поэтому полунормальна в и – супердобавление в .Лемма доказана.
Лемма 2.1.7 Если – полунормальная подгруппа группы и , то – полунормальная подгруппа группы и любая группа из содержит супердобавление к в .
Доказательство. Пусть
полунормальна в и . Тогда . Пусть – наименьшая подгруппа из такая, что . Выберем произвольную подгруппу из , отличную от . Так как , то . Поскольку , то по тождеству Дедекинда . Теперь , а из полунормальности следует, что – подгруппа группы и – собственная подгруппа группы . Это означает, что полунормальна в и . Так как , то лемма доказана.Лемма 2.1.8 Пусть – полунормальная подгруппа группы и . Если – полунормальная подгруппа группы , то – полунормальная подгруппа группы и .
Доказательство. По условию
и , где . Кроме того, – подгруппа группы . Ясно, что . Если – собственная подгруппа в , то – собственная подгруппа в и . Ясно, что и перестановочны с , поэтому . Так как , то . Значит, является супердобавлением к в , то есть , что и требовалось доказать.Лемма 2.1.9 Если – подгруппа группы и – её минимальное добавление, то следующие утверждения эквивалентны:
полунормальна в группе и ;для каждого элемента
и каждого элемента существуют целое число и элемент такие, что .Доказательство.
. Пусть подгруппа полунормальна в группе и – ее супердобавление. Подгруппа , где пробегает все элементы группы , причем – подгруппа группы , что следует из полунормальности . Поэтому . Теперь выбираем произвольные элемент и элемент . В силу того, что получаем, что для некоторого целого числа и некоторого элемента .