Поскольку указанная сумма представляет собой удвоенную арифметическую прогрессию с первым членом 1, последним членом 999, сложенную с числом 1000, то она равна
Тогда при
уравнение не будет иметь решений, при их будет бесконечно много, а при уравнение будет иметь два решения.Метод раскрытия модулей рассмотрим на примере:
Пример Решить уравнение
Решение. Это уравнение содержит более одного модуля.
Метод решения уравнений, содержащих переменные под знаком двух и более модулей, состоит в следующем.
1. Найти значения переменной, при которых каждый из модулей обращается в нуль:
, ; , ; , .2. Отметить эти точки на числовой прямой.
3. Рассматриваем уравнение на каждом из промежутков и устанавливаем знак выражений, которые находятся под модулями.
1) При
или . Чтобы определить знак каждого из выражений под модулем на этом промежутке, достаточно взять любое значение из этого промежутка и подставить в выражение. Если полученное значение отрицательно, значит, при всех из этого промежутка выражение будет отрицательным; если полученное числовое значение положительно, значит, при всех значениях из этого промежутка выражение будет положительным.Возьмем значение
из промежутка и подставим его значение в выражение , получаем , значит на этом промежутке отрицательно, а следовательно ``выйдет'' из под модуля со знаком ``минус'', получим: .При этом значении
, выражение получит значение , значит, оно на промежутке также принимает отрицательные значения и ``выйдет'' из модуля со знаком ``минус'', получим: .Выражение
получит значение и ``выйдет'' из под модуля со знаком ``минус'': .Уравнение на этом промежутке получится таким:
, решая его, находим: .Выясняем, входит ли это значение в промежуток
. Оказывается входит, значит является корнем уравнения.2) При
. Выбираем любое значение из этого промежутка. Пусть . Определяем знак каждого из выражений под модулем при этом значении . Оказывается, что выражение положительно, а два других отрицательны.Уравнение на этом промежутке примет вид:
. Решая его, находим . Это значение не входит в промежуток , а значит, не является корнем уравнения.3) При
. Выбираем произвольное значение из этого промежутка, скажем, и подставляем в каждое из выражений. Находим, что выражения и положительны, а --- отрицательно. Получим следующее уравнение: .После преобразования, получим:
, а значит, уравнение не имеет корней на этом промежутке.4) При
. Нетрудно установить, что все выражения на этом промежутке положительны, а значит получим уравнение: , , которое входит в промежуток и является корнем уравнения.Ответ.
, .Пример Решить уравнение
Решение.
Ответ.
, .Из сформулированного свойства модуля можно вывести два полезных следствия:
Проиллюстрируем применение первого из них для решения задачи вступительного экзамена в Санкт-Петербургский государственный университет.
Пример Изобразить график функции
Решение. Перепишем задающую функцию выражение, используя первое следствие:
.Осталось только построить графики функций
, в одной системе координат и определить участки, на которых один из них выше другого (см. рис. ).