Смекни!
smekni.com

Лекции по физике (стр. 20 из 24)

«Концепция объективной реальности элементарных частиц, следовательно, курьезным образом испаряется, обращаясь не в туман, не в какое-то новое неясное или еще не постигнутое понятие реальности, а в прозрачную ясность математики, которая теперь соответствует не поведению атомных частиц, а, скорее, нашим знаниям об этом поведении.»

И В.Вайскопф возражает против такой концепции тоже весьма элегантно:

Я не согласен с заявлением о том, что в атомном мире существует какой-то недостаток реальности. В конце концов, видимый реальный мир состоит из тех же самых атомов, обнаруживающих такое странное поведение. Действительно, атомный мир отличается от нашего привычного мира сильнее, чем когда-то ожидали; он обладает более богатым набором явлений, чем можно вообразить, пользуясь классическими представлениями. Но все это не делает его менее реальным.[8][8]

И еще несколько слов о том, как, скажем так, небрежное объяснение затрудняет понимание существа дела. Как выяснилось, электрон обладает спином - собственным моментом импульса. И по поводу невозможности объяснения существования этого последнего в рамках классической физики приводится обычно такое обоснование.

Магнитный момент электрона, который “вращается” по орбите, связывается с механическим моментом M (мы изменили принятое нами ранее обозначение для момента импульса) соотношением

.

Однако, для спиновых моментов

... отношение собственных магнитного и механического моментов в два раза больше, чем для орбитальных моментов:

. (31.2)

Таким образом, представление об электроне как о вращающемся шарике оказалось несостоятельным.[9][9]

Конечно, отношение к написанному в книжках должно быть уважительным, но не обязательно все написанное принимать на веру. Вот и эта “трудность” с вдвое большим отношением моментов, если немного подумать, может быть легко преодолена.

Представим себе электрон в виде заряженной сферы очень маленького радиуса и пусть масса этой сферы ровно в два раза меньше массы электрона. Другая половина массы будет приходиться на электрическое поле, от электрона, естественно, неотделимое.

Подсчитаем энергию поля и приравняем ее половине массы электрона:

;

;

.

Эта величина приводится в справочниках как “классический радиус электрона”. Если предположить, что это и есть радиус нашей заряженной вращающейся сферы, то, поскольку при ее вращении электрическое поле не вращается, а удельный заряд сферы вдвое больше, чем у электрона (масса в два раза меньше), мы как раз и получим нужное нам отношение

.

Я ни в коем случае не предлагаю Вам представлять себе электрон в виде “вращающегося маленького шарика”! Я просто хочу обратить внимание на неправомочность утверждения “оказалось несостоятельным”.


Лекция 21

19.2. Как нам это понимать

Итак, было сказано предельно ясно: трудности понимания квантовой физики возникают потому, что мы пытаемся применить старые представления к новым явлениям. Понять квантовые явления, разумеется, не просто, как, впрочем, непросто было понимать и классические воззрения при знакомстве с ними. Но ясно одно - что бы что-нибудь понять в квантовой физике нам следует применить какие-то новые воззрения. К великому сожалению, все объяснения обычно сводятся лишь к бесконечному повторению одной мысли: понять новое нельзя на основе старых представлений. Но в чем же заключаются новые представления?

Мир един и физика едина. И классическая физика и квантовая, - обе они описывают один и тот же мир, в котором мы живем. И к некоторому хотя бы пониманию квантовых явлений не может привести бесконечное их противопоставление. Попробуем, по возможности аккуратно, хотя бы начать создавать в наших головах эти новые представления.

D З1 З2
ЛинзаI 0 X Звездный интерферометр Майкельсона

Во многих книжках рассматривается модельная задача о дифракции электронов на двух щелях. Мне более симпатична задача о работе звездного интерферометра Майкельсона. Все-таки это реальный прибор, в работе которого участвуют несколько более понятные с точки зрения физики кванты - фотоны.

Свет от звезды очень слаб, но мы можем ослабить его еще больше. Тогда можно говорить о поглощении атомами фотоэмульсии пластинки, на которой получается изображение дифракционной картинки, первого кванта, второго и т.д.

Во-первых, видимо, нам придется отказаться от буквального понимания гипотезы о распространении света в виде микрочастиц - фотонов. Если на зеркала попадают разные фотоны, то трудно представить себе, что колебаний электрического поля в них синфазны. Но, с другой стороны, расстояние между зеркалами измеряется метрами, и пришедшая в точку поглощения кванта порция энергии ћw не может принадлежать одному фотону, испущенному далекой звездой в направлении нашего интерферометра - даже если мы представим себе фотон выросшим до таких размеров, в зеркалах не отразится, “провалится” средняя часть фотона. Не видно и способа определить, от какого из зеркал отразился этот поглощенный фотопластинкой квант света.

В то же время кажется уместным и более интересным вопрос, чем определяется “выбор” точки, в которой происходит поглощение кванта. При поглощении большого количества квантов кривая степени почернения фотопластинки будет соответствовать кривой дифракции Фраунгофера на двух щелях c максимумами в точках

, полученная на основе волновых представлений. Но каким образом первый, второй и т.д. кванты “узнают”, что им следует поглощаться чаще вблизи одного из максимумов кривой, а не вблизи минимума? Боюсь, что и на этот вопрос мы не сможем ответить вразумительно. Нам придется констатировать факт, что рассчитанная кривая зависимости интенсивности света I(x) представляет собой лишь кривую распределения вероятности P(x) поглощения фотона. Это утверждение мы можем проверить экспериментально, проведя фотографирование с помощью интерферометра некой далекой звезды. Но дисциплина мышления требует говорить лишь о том, что мы можем проверить опытом.

По этому поводу, видимо, не следует сокрушаться - эта пара вопросов не составляет особого исключения, физика не может ответить и на множество других вопросов. Не так редко мы рассчитываем некий процесс “в общем”, не зная ничего о его деталях. Важно выбрать правильное приближение, чтобы получить верный и полезный для практики результат. В данном случае это будет волновое приближение. На основе корпускулярных представлений решение задачи представляется, как минимум, затруднительным.

Подчеркну еще раз. На основе волновых представлений мы можем рассчитать только вероятность поглощения кванта света в той или иной точке. Деталей этого процесса, как и деталей прохождения кванта через зеркала, мы объяснить не умеем. Во всяком случае мы не сможем наблюдать эти процессы экспериментально - тем самым мы разрушили бы “хрупкую индивидуальность квантового состояния”. Это, однако, не делает электромагнитное поле хоть в чем-то нереальным!

Мы легко можем допустить, что какие-то “внутренние” процессы происходят при поглощении кванта света. Но, собственно, в этой невозможности определить детали процесса прохождения фотона через щели и/или поглощения кванта, в этом и заключается один из важных элементов квантовомеханического представления поведения микрочастиц, нового способа мышления:

Главный пункт в подходе Бора заключается в опровержении того, что можно решить всю проблему, заглянув внутрь атомной структуры, что, применив тончайшие средства наблюдения, можно решить вопрос о том, является электрон волной или частицей. Природа устроена так, что никакое наблюдение крошечного объекта нельзя выполнить, не воздействуя на него. Квантовое состояние обладает характерной способностью ускользать от обычного наблюдения, так как сам акт такого наблюдения уничтожает условия существования квантового состояния.[10][1]

В этом суть. Быть может только можно выразиться чуть аккуратнее: вместо слова “уничтожает” воспользоваться словом “изменяет”, поскольку квантовый объект не может существовать в неквантовом состоянии. И попытки понять, почему “природа устроена так” скорее запутает нас, чем прояснит ситуацию.

Как видите, речь мы ведем о дуализме, о двойственности представления света в виде волны или потока фотонов, но при таком подходе понятие дуализма приобретает несколько иной оттенок. Речь не идет о двойственности природы частицы-фотона, речь идет о двух возможных приближениях при описании кванта электромагнитного поля.