где
- критический момент двигателя.Момент Мнач во втором слагаемом числителя (34) можно записать с учетом принятых допущений в виде
, (36)С учетом (35) и (36) выражение (34) примет следующий вид:
. (37)Для рабочей части механической характеристики двигателя можно принять
,и тогда передаточную функцию (37) можно записать в упрощенном виде
(38)Представив зависимость скольжения электродвигателя от угловой частоты напряжения статора в приращениях и выполнив линеаризацию при условии, что в рабочей области s<<l, получим
(39)Уравнение равновесия моментов (13) может быть записано в приращениях в виде
. (40)На основании полученных выражений может быть составлена структурная схема асинхронного двигателя при управлении угловой частотой напряжения статора и при условии постоянства потокосцепления статора. Однако это удобнее сделать, если представить координаты двигателя в о. е., приняв за базовые значения координат их значения в номинальном режиме: Мп.ф.н., Ω1н, U1αн, Ω0н=Ω1н/pп где Ω0н - синхронная угловая скорость двигателя. Тогда
, , , , .Передаточная функция (37) с учетом (39) запишется так:
(41)где γ=U1α/U1αн - относительное напряжение статора; ν=Ω1/Ω1н – относительная частота напряжения статора.
Или в упрощенном виде:
(42)Соответственно на основании уравнения (40) имеем
(43)где Tм=JΩ0н/Мп.ф.н - механическая постоянная времени двигателя.
Упрощенная структурная схема асинхронного двигателя при управлении угловой частотой напряжения статора, построенная на основании выражений (42), (43), показана на рис. 1.
Рис.1.
Используя изложенный выше подход к выводу передаточных функций двигателя, можно получить передаточную функцию, связывающую изменение электромагнитного момента двигателя ΔМ при изменении напряжения статора Δu1α и неизменной частоте напряжения статора (ω1=const). Этот случай соответствует изменяющемуся потокосцеплению статора. В о. е. получим
, (44)Где S2 - абсолютное скольжение электродвигателя в рабочей точке, равное отношению угловой частоты ЭДС ротора Ω2 (приведенной к двухполюсному электродвигателю) к номинальному значению угловой частоты напряжения статора Ω1н.
.Структурная схема асинхронного электродвигателя при управлении напряжением статора показана на рис. 2.
Рис.2.
2.3 Статические характеристики САУ на основе АД
2.3.1 Статические характеристики САУ при
Для построения механических характеристик разомкнутой системы электропривода в диапазоне скоростей, меньше синхронной, воспользуемся зависимостью для момента М в функции скольжения при f=var.
Где Uф.с.м – номинальное фазное напряжения статора;
f – частота напряжения на выходе инвертора;
nc – синхронная скорость двигателя;
rp’, xp’, rc, xc – параметры схемы замещения двигателя;
После подсчета в программе MathCad получаем механические характеристики:
2.3.2 Статические характеристики САУ при
Для построения механических характеристик разомкнутой системы электропривода в диапазоне скоростей, меньше синхронной, воспользуемся зависимостью для момента М в функции скольжения при f=var.
После подсчета в программе MathCad получаем механические характеристики:
2.3.3 Статические характеристики САУ при вентиляторной нагрузке
Для построения механических характеристик разомкнутой системы электропривода в диапазоне скоростей, меньше синхронной, воспользуемся зависимостью для момента М в функции скольжения при f=var.
После подсчета в программе MathCad получаем механические характеристики:
3. Динамические характеристики САУ переменного тока
Исходная структурная схема разомкнутой САУ:
ПЧ АД
1 -Преобразование структурной схемы.
Получим передаточную функцию разомкнутой системы «ПЧ-АД по каналу управления напряжением:
; при условииЭтап первый
Этап второй
Этап четвертый
Этап пятый
Получили передаточную функцию разомкнутой системы «ПЧ-АД по каналу управления напряжением
Где
; ; ; ; ; ; ; ;