где
Момент Мнач во втором слагаемом числителя (34) можно записать с учетом принятых допущений в виде
С учетом (35) и (36) выражение (34) примет следующий вид:
Для рабочей части механической характеристики двигателя можно принять
и тогда передаточную функцию (37) можно записать в упрощенном виде
Представив зависимость скольжения электродвигателя от угловой частоты напряжения статора в приращениях и выполнив линеаризацию при условии, что в рабочей области s<<l, получим
Уравнение равновесия моментов (13) может быть записано в приращениях в виде
На основании полученных выражений может быть составлена структурная схема асинхронного двигателя при управлении угловой частотой напряжения статора и при условии постоянства потокосцепления статора. Однако это удобнее сделать, если представить координаты двигателя в о. е., приняв за базовые значения координат их значения в номинальном режиме: Мп.ф.н., Ω1н, U1αн, Ω0н=Ω1н/pп где Ω0н - синхронная угловая скорость двигателя. Тогда
Передаточная функция (37) с учетом (39) запишется так:
где γ=U1α/U1αн - относительное напряжение статора; ν=Ω1/Ω1н – относительная частота напряжения статора.
Или в упрощенном виде:
Соответственно на основании уравнения (40) имеем
где Tм=JΩ0н/Мп.ф.н - механическая постоянная времени двигателя.
Упрощенная структурная схема асинхронного двигателя при управлении угловой частотой напряжения статора, построенная на основании выражений (42), (43), показана на рис. 1.
|
|
|
Рис.1.
Используя изложенный выше подход к выводу передаточных функций двигателя, можно получить передаточную функцию, связывающую изменение электромагнитного момента двигателя ΔМ при изменении напряжения статора Δu1α и неизменной частоте напряжения статора (ω1=const). Этот случай соответствует изменяющемуся потокосцеплению статора. В о. е. получим
Где S2 - абсолютное скольжение электродвигателя в рабочей точке, равное отношению угловой частоты ЭДС ротора Ω2 (приведенной к двухполюсному электродвигателю) к номинальному значению угловой частоты напряжения статора Ω1н.
Структурная схема асинхронного электродвигателя при управлении напряжением статора показана на рис. 2.
|
Рис.2.
2.3 Статические характеристики САУ на основе АД
2.3.1 Статические характеристики САУ при
Для построения механических характеристик разомкнутой системы электропривода в диапазоне скоростей, меньше синхронной, воспользуемся зависимостью для момента М в функции скольжения при f=var.
Где Uф.с.м – номинальное фазное напряжения статора;
f – частота напряжения на выходе инвертора;
nc – синхронная скорость двигателя;
rp’, xp’, rc, xc – параметры схемы замещения двигателя;
После подсчета в программе MathCad получаем механические характеристики:
2.3.2 Статические характеристики САУ при
Для построения механических характеристик разомкнутой системы электропривода в диапазоне скоростей, меньше синхронной, воспользуемся зависимостью для момента М в функции скольжения при f=var.
После подсчета в программе MathCad получаем механические характеристики:
2.3.3 Статические характеристики САУ при вентиляторной нагрузке
Для построения механических характеристик разомкнутой системы электропривода в диапазоне скоростей, меньше синхронной, воспользуемся зависимостью для момента М в функции скольжения при f=var.
После подсчета в программе MathCad получаем механические характеристики:
3. Динамические характеристики САУ переменного тока
Исходная структурная схема разомкнутой САУ:
ПЧ АД
|
1 -Преобразование структурной схемы.
Получим передаточную функцию разомкнутой системы «ПЧ-АД по каналу управления напряжением:
|
Этап первый
|
Этап второй
|
Этап четвертый
|
Этап пятый
|
Получили передаточную функцию разомкнутой системы «ПЧ-АД по каналу управления напряжением
Где