Смекни!
smekni.com

Программа для поступающих в вузы (ответы) (стр. 14 из 24)

Для азота и фосфора известны кислоты отвечающие степеням окисления +3 и +5 (для фосфора также +1 и +4). Кислоты азота в лаборатории получают действием сильных окислителей на нитраты и нитриты. Н3РО3 в лаборатории получают гидролизом хлорида фосфора. Н3РО4 – растворением соответствующего оксида в воде. Кислоты азота – сильные окислители, однако, НNО2 восстанавливается при действии только сильных восстановителей. Кислоты фосфора являются сильными восстановителями, но при действии сильных восстановителей они восстанавливаются.

Аммиак и азотная кислота используются для получения азотных удобрений, взрывчатых веществ. Фосфор и его соединения используются в производстве спичек. Роль азота и фосфора очень велика в жизни организмов. Они входят в состав молекул ДНК, с помощью которых осуществляется синтез белков и передача наследственной информации.

Фосфор повышает засухо- и морозоустойчивость, способствует накоплению ценных веществ в растении. Удобрениями служат как природные фосфорные руды, так и продукты их химической переработки. Качество фосфорных удобрении характеризуется содержанием усвояемого Р в пересчете на Р2О5.Стандартным считается удобрение, содержащее 18,9% Р2О5. Сырьем для получения служат природные фосфорные руды – фосфориты и апатиты. Фосфоритная мука – это природный измельченный фосфорсодержащий минерал. Производство состоит из операций дробления, сушки и размола фосфоритов. Суперфосфат простой получается разложением природных фосфатов серной кислотой. Простой суперфосфат содержит от 14 до 21% усвояемого Р2О5:

4Ca5(PO4)3F + 14H2SO4 + 13H2O → 6Ca(H2PO4)2·H2O + 14CaSO4·0,5H2O + HF,

Ca5(PO4)3F получают из кальцийфторапатита Ca5(PO4)3F·CaF5

Суперфосфат двойной отличается меньшим содержанием балласта и содержит в 2 – 3 раза больше усвояемого Р2О5.

Азот входит в состав хлорофилла и белков, являющихся основой живой ткани. Растения усваивают азот, содержащийся в почве в виде солей. Только некоторые растения (бобовые) усваивают азот воздуха. Основными азотными удобрениями являются: нитрат, сульфат, хлорид и фосфат аммония, калиевая, натриевая и кальциевая селитры, мочевина. Нитрат аммония – наиболее эффективное азотное удобрение, содержащее 35% азота. Получают нейтрализацией азотной кислоты сухим аммиаком:

HNO3 + NH3→NH4NO3

Сульфат аммония содержит 21,2% азота и получается поглощением серной кислотой аммиака газа коксовых печей, нейтрализацией серной кислоты синтетическим аммиаком, обработка гипса растворами карбоната аммония:

CaSO4 + (NH4)2CO3 → (NH4)2SO4+ CaCO3

Мочевина – наиболее ценное удобрение, содержащее 46,6% азота и получаемое в промышленности из аммиака и углекислого газа:

2NH3 + CO2 → NH2COONH4 → NH2CONH2 + H2O

Общая характеристика элементов главной подгруппы четвертой группы периодической системы. Кремний, его физические и химические свойства. Оксид кремния и кремниевая кислота. Соединения кремния в природе. Углерод, его аллотропные формы. Химические свойства углерода. Оксиды углерода, их химические свойства. Угольная кислота, карбонаты и гидрокарбонаты, их свойства. Превращения карбонатов и гидрокарбонатов. Качественная реакция на карбонат-ион.

4А группе относятся элементы углерод, кремний, германий, олово и свинец. Углерод известен с древних времен. Он может быть получен при нагревании древесины без доступа воздуха, при обугливании животных остатков, неполном сгорании органических веществ (сажа). Графит и алмаз встречаются в природе, но в последнее время их в основном получают искусственным путем. Карбин получается синтетически при каталитическом окислении ацетилена и является наиболее стабильной формой углерода. В 1990 г. из сажи, образованной при испарении графита в электрической дуге в атмосфере гелия, была выделена новая форма С – фуллерен С60. Кремний получают восстановлением SiO2 магнием или углеродом в электрической печи. Высокой чистоты Si получают восстановлением SiCl4 цинком или водородом. Остальные элементы – термическое восстановление их оксидных соединений с помощью Н2, С, СО.

По химическим и физическим свойствам углерод и образуемые им соединения резко отличаются от др. элементов группы. Будучи типичным неметаллом, С в форме простого вещества, а также в соединениях с кислородом, азотом и серой способен образовывать кратные связи в группировках типа >C=C<, –C=C–, >C=O, O=C=O, –C=N, >C=S. Для Si и Ge соединений с подобными группировками не установлено, Sn и Pb образуют соединения, характерные для металлов. При обычных условиях все аллотропные модификации углерода весьма инертны, др. элементы группы достаточно активны и взаимодействуют со многими веществами. При увеличении температуры химическая активность всех веществ, образованных элементами группы, резко возрастает. В соединениях С и Si проявляют СО –4, +2, +4, Ge, Sn и Pb – +2, +4. Устойчивость соединений в высших СО от Si к Pb уменьшается.

Э + Н2 =

Э + Г2 = C (CF4); Si, Ge, Sn (ЭГ4); Pb (F4, Cl4, Br2, I2)

Э + О2 = ЭO2; Pb (PbO)

Э + S = C, Si, Ge, Sn (ЭS2); Ge, Sn, Pb (ЭS)

Si + N2 = Si3N4

Э + Р = Si, Ge, Sn (ЭР), ЭР2, ЭР3

Э + С =

Э + Ме = карбиды, силициды, сплавы.

Э + H2O =

Э + H2SO4(k) = C, Si; Ge, Sn (Э(SO4)2); Pb(HSO4)2

Э + H2SO4(p) = C, Si, Ge; ЭSO4 (Pb пассивируется)

Э + NaOH = C, Ge; Na2SiO3; Sn, Pb (Na2[Э(OH)4])

Э + HNO3(k) = Si; C (CO2); Ge, Sn (xЭO2·yH2O)

Э + HNO3(p) = C, Si, Ge; Sn, Pb (Э(NO3)2)

Э + HCl = C, Si, Ge; Sn, Pb (ЭCl2), (Pb пассивируется).

Наиболее важными соединениями углерода является СН4 и СО2. СН4 является химически инертным газом. Огромные его количества находятся в природе в виде природного газа. Он широко используется в различных органических синтезах, а также в быту. СО2 представляет собой газ. Он проявляет кислотные свойства, являясь ангидридом угольной кислоты. Он используется в качестве восстановителя, в пищевой промышленности для газирования различных напитков, «сухой лед». Также большое практическое значение имеют соли не выделенной в свободном состоянии угольной кислоты Н2СО3. Из соединений кремния очень важен оксид SiO2. Это кислотный оксид. Он используется как восстановитель, а также в стекольной и цементной промышленности.

В свободном виде кремний в природе не встречается, а только в соединениях, важнейшим из которых является кремнезем SiO2. Кремний также входит в состав полевого шпата и каолина. Кремнезем является главным сырьем для производства стекла, цемента и керамики. Стекло получают из смеси песка SiO2, соды Na2CO3 и известняка CaCO3, которую нагревают до 1500°С. При этом протекают реакции:

Na2CO3+ SiO2 = Na2SiO3 + CO2;

CaCO3 + SiO2 = CaSiO3 +CO2.

Затем силикаты натрия и калия сплавляют с песком и получают стекло Na2O·CaO·6SiO2.

Если же вместо соды брать поташ К2CO3, то образуется тугоплавкое стекло К2O·CaO·6SiO2.

Чтобы придать стеклу нужную окраску, в него добавляют соответствующие оксиды металлов: оксиды железа придают стеклу зеленый цвет, кобальта – синий, меди – голубой, серебра – желтый и т.д. Если в состав стекла входит оксид свинца, то получают хрусталь – ценное стекло, обладающее большой лучепреломляющей способностью. Хрусталь хорошо шлифуется, после чего приобретает сильный блеск.

Цемент получают из известняка и глины. При этом используют и мергель. Эту смесь обжигают в специальных печах и полученную спекшуюся массу размалывают. Он широко используется в строительстве как вяжущий материал, который при смешивании с водой затвердевает. Условно различают два типа цемента по принципу их «свертывания» - обычный цемент и портландский цемент. Процесс «схватывания» обычного цемента, состоящего из силиката кальция, происходит вследствие образования карбоната кальция за счет углекислого газа воздуха:

CaO·SiO2 + CO2 + H2O = CaCO3 + H2SiO3.

При «схватывании» портландского цемента углекислота не участвует в процессе, а происходит гидролиз силикатов с последующим образованием нерастворимых кристаллогидратов:

Ca3SiO5 + H2O = Ca2SiO4 + Ca(OH)2;

Ca2SiO4 + 4H2O = Ca2SiO4·4H2O.

Теория химического строения органических веществ. Зависимость свойств органических веществ от химического строения. Изомерия. Электронная природа химической связи в молекулах органических соединений, типы разрыва связи, понятие о свободных радикалах.

Создателем теории химического строения был великий русский химик А.М.Бутлеров. Основные положения своей теории он сформулировал в 1858-1861 г.г. Некоторая трудность для нас заключается в том, что создатель теории строения не формулировал пункт за пунктом положения своей теории в одном месте: они пронизывают все научное творчество самого Бутлерова и его учеников.