Смекни!
smekni.com

Пятая побочная подгруппа Периодической системы элементов Д.И. Менделеева (стр. 9 из 10)

Оба элемента обладают ценным сочетанием качеств. Способность поглощать газы хороша для поддержива­ния высокого вакуума: химическая инертность позволя­ет использовать их в высокоагрессивных средах, вплоть до атомных реакторов, и применять в медицине при костной и пластической хирургии. Металлы нисколько не вредят деятельности живых тканей организма. На­стоящий переворот вызвало применение тантала, ниобия и их соединений в металлургии. Появилась возможность резко расширить ассоримент различных сталей и спла­вов. Причем не только ниобий и тантал меняют харак­тер сплавов, но и, наоборот, добавка к этим элементам других металлов придает им иные качества. Алюминий, например, повышает прочность металлического ниобия и тантала. Вольфрам и молибден увеличивают их тепло­стойкость. С добавлением меди увеличивается способ­ность металлов проводить электрический ток. При этом сплав почти вдвое становится прочнее и тверже, чем медь.

Из тантала изготовляют фильеры для протяжки ни­тей в производстве искусственных волокон. Раньше та­кие фильеры делали из платины и золота. Самые твер­дые сплавы получают из карбида тантала с никелем в качестве цементирующей добавки. Они настолько твер­ды, что оставляют царапины даже на алмазе, который считается эталоном твердости.

За время, прошедшее после издания этой книги в 1973 г., накопилось немало новых данных о применении ниобия и тантала. Так, по сведениям, относящимся к январю 1975 г., первое место по величине критической температуры перехода в сверхпроводящее состояние бы­ло отдано германиду ниобия Nb3Ge. Его критическая температура составляет 23,2 К (примерно—250 °С). Дру­гое соединение — станнид ниобия — становится сверх­проводником при немного более низкой температуре —255 °С. Чтобы полнее оценить этот факт, укажем, что большинство сверхпроводников известны лишь для тем­ператур жидкого гелия (2,172 К). Сверхпроводники из ниобиевых материалов позволяют изготавливать магнит­ные катушки, создающие чрезвычайно мощные магнит­ные поля. Магнит диаметром 16 см и высотой 11 см, где обмоткой служит лента из такого материала, способен создать поле колоссальной напряженностью. Необходи­мо только перевести магнит в сверхпроводящее состоя­ние, т. е. охладить, а охлаждение до менее низкой тем­пературы произвести, конечно, легче.

Важна роль ниобия в сварочном деле. Пока свари­вали обычную сталь, никаких особых трудностей этот процесс не представлял и сложностей не создавал. Од­нако, когда начали сваривать конструкции из специаль­ных сталей сложного химического состава, сварные швы стали терять многие ценные качества свариваемого ме­талла. Ни изменения состава электродов, ни усовершен­ствование конструкций сварочных аппаратов, ни сварка в атмосфере инертных газов никакого эффекта не дава­ли. Вот тут-то на помощь и пришел ниобий. Сталь, в ко­торую как небольшая добавка введен ниобий, можно сваривать, не опасаясь за каче­ство сварного (рис. 4) шва. Хрупкость шву придают воз­никающие при сварке карбиды, но способность ниобия соединяться с углеродом и препятствовать образованию карбидов других металлов, нарушающих свойства спла­вов, спасли положение. Карбиды же самого ниобия, как и тантала, обладают доста­точной вязкостью. Это осо­бенно ценно при сварке кот­лов и газовых турбин, рабо­тающих под давлением и в агрессивной среде.,

Ниобий и тантал способ­ны поглотить значительные количества таких газов, как водород, кислород и азот. При комнатной температуре 1 г ниобия способен погло­тить 100 см3 водорода. Но даже при сильном нагревании это свойство практически не слабеет. При 500°С ниобий еще может поглотить 75 см3 водорода, а тантал в 10 раз больше. Этим свой­ством пользуются для создания высокого вакуума или в электронных приборах, где необходимо сохранить точные характеристики при высоких температурах. Ниобий и тантал, нанесенные на поверхность деталей, как губка, поглощают газы, обеспечивая стабильную работу прибо­ров. С помощью этих металлов больших успехов достиг­ла восстановительная хирургия. В медицинскую практи­ку вошли не только пластинки из тантала, но и нити из тантала и ниобия. Хирурги успешно используют такие нити для сшивания порванных сухожилий, кровеносных сосудов и нервов. Танталовая «пряжа» служит для воз­мещения мускульной силы. С ее помощью хирурги укреп­ляют после операции стенки брюшной полости.

Рис. 4. Конструкция хвосто­вого оперенья самолета из жа­ропрочной ниобиевой стали.

Тантал имеет исключительно прочную связь между атомами. Это обусловливает его чрезвычайно высокую температуру плавления и кипения. Механические качества и химическая стойкость приближают тантал к платине. Химическая промышленность использует такое благоприятное сочетание качеств тантала. Из него гото­вят детали кислотостойкого оборудования химических заводов, нагревательные и охладительные устройства, имеющие контакт с агрессивной средой.

В бурно развивающейся атомной энергетике находят применение два свойства ниобия. Ниобий обладает удивительной «прозрачностью» для тепловых нейтронов, т. е. способен пропускать их через слой металла, прак­тически с нейтронами не реагируя. Искусственная ра­диоактивность ниобия (получающаяся при контакте с радиоактивными материалами) невелика. Поэтому из него можно делать контейнеры для хранения радиоак­тивных отходов и установки по их переработке. Другим не менее ценным (для ядерного реактора) свойством нио­бия является отсутствие заметного взаимодействия с ураном и другими металлами даже при температуре 1000 °С. Расплавленные натрий и калий, применяемые в качестве теплоносителей в атомных реакторах некоторых типов, свободно могут циркулировать по ниобиевым трубам, не причиняя им никакого вреда.

Ниобий и тантал находят все больше и больше по­требителей. Однако применение сдерживается трудно­стями их получения и, самое главное —высокой стоимо­стью очистки этих металлов. С удешевлением производ­ства будет расширяться и сфера их использования.

Глава V. Нильсборий

Экспериментально установлено ранее неизвестное явление образования химического элемента с порядковым номером 105. Изотоп этого элемента с периодом полураспада Т1/2 ~ 2 с получен при облучении америция ядрами неона.

В статье «Рождение сто пятого», помещенной в газете «Известия» 13 августа 1970 г., приведено следующее высказывание академика Г. Н. Флерова:

«В сообщении Объединенного института ядерных исследований от 18 февраля 1970 года мы писали о синтезе спонтанно делящегося изотопа 105-го элемента...

Наша лаборатория хотела бы назвать этот элемент в честь выдающегося физика XX в. Нильса Бора. Это предложение мы уже направили в Международный союз чистой и прикладной химии».

Следуя прекрасной традиции, сложившейся среди ученых, сообщение о синтезе сто пятого элемента было разослано практически во все крупные лаборатории мира. Работы по синтезу этого элемента получили международное признание.

Данные, касающиеся синтеза нильсборня105Ns, указывают на возможность получения сходным путем и более тяжелых элементов (например, 106) и позволяют довольно уверенно оценить их свойства.

Пожалуй, не менее ценное с точки зрения ядерной физики открытие состоит в том, что исследователями найден принципиально новый метод синтеза сверхтяжелых элементов. Если с 1943 по 1956 г., в результате цепных ядерных реакций при добавлении нейтронов к ядру определенного вида атомов, были получены элементы по сотый включительно, то в дальнейшем этот метод не дал результатов. Нейтрон не успевает слиться с ядром 100-го элемента, потому что это ядро делится быстрее, чем происходит реакция.

Новый путь основан на процессе взаимодействия ускоренных ионов с ядром тяжелого элемента. Так и были синтезированы курчатовий и нильсборий. Пучок ионов неона ускорялся на циклотроне и при интенснвности ~5.1012 в 1с сталкивался с мишенью, состоящей нз нескольких миллиграммов изотопа америция 243Аm. Происходил процесс слияния ядер мишени с налетающей частицей:

243Am + 22Ne 265Ns* 265-x.n Ns + x.n

После «испарения» нескольких нейтронов (4 и 5) из возбужденного составного ядра получается атом, имеющий в ядре 105 протонов, а общую массу 261 или 260. За сутки непрерывной работы циклотрона удается получить и обнаружить одно новое ядро. При облучении америция 243Am ионами неона 22Ne зарегистрирован спонтанно делящийся излучатель с периодом полураспада 1,8 ± 0,6 с.