У цьому випадку просторові перешкоди значно менш важливі, оскільки як група, що відходить, так і нуклеофіл знаходяться достатньо далеко. Стійкість перехідного стану визначається в основному електронними, а не просторовими факторами: атакується не найменш заміщений атом карбону, а атом карбону, який найкраще може розмістити позитивний заряд (про таку реакцію говорять, що вона має значний SN1 – характер).
SN2 – розкриття кільця, що каналізується кислотою:
У розщепленні, що каталізується основами, група, яка відходить, значно менш ефективна, а нуклеофіл є дуже ефективним. Розрив та утворення зв’язку відбуваються майже в однаковій мірі, і реакційна здатність контролюється, як завжди, просторовими факторами.
SN2 – розкриття кільця, що каналізується основою:
Нуклеофільна атака епоксидного циклу у некислому середовищі була добре вивчена; широкий діапазон реакцій вказує на другий порядок реакції, що відповідає SN2 – механізму [7].
Пакер та Ісакс висказали ідею, що розрив зв’язку є більш важливим фактором, ніж його поява в утворенні перехідного стану [4].
Механізм реакції розкриття епоксидного циклу у кислому середовищі не був вивчений досконально.
Існує майже рівна імовірність на енергетичному рівні двох механізмів. Таким чином, кінетичний критерій щодо механізму є незадовільне ним та можуть бути використані альтернативні критерії [7].
Прітчард та Лонг вивчали кінетику та співвідношення отриманих продуктів реакції гідролізу алкілзаміщених оксидів етилену у кислому середовищі [7]. Виходячи з кореляції між константами швидкості та функції Гамету Н0, вони зробили висновок, що реакція протікає за механізмом А1.
Другим критерієм щодо встановлення механізму розкриття епоксидного циклу було використання рівняння Тафта:
Вчені отримали величину
Однак Пакер та Ісакс помітили, що від’ємне значення
Третій критерій заснований на гіпотезі, що механізм (А1 чи А2) залежить від замісника. Відношення констант швидкості другого порядку реакції гідролізу епоксидів в оксиді дейтерія та у воді, отримані Прітчардом та Лонгом, були в інтервалі 1,9─2,2; це, на їхню думку, вказувало на А1 – механізм. У більш детальному аналізі Свейн та Торнтон довели, що ці відомості вказують на механізм А2.
У четвертий критерій покладено важливість значення ентропії активації ΔS# реакцій, що вивчають.
Таблиця 1.1 - Значення ентропії активації та механізм для реакцій карбонових кислот, естерів та третбутилгалогенідів із спиртами як розчинником [7]
Субстрат | Розчинник | Т, 0С | Механізм | ΔS#, кал/моль•К | ||
1 | 2 | 3 | 4 | 5 | ||
Ph-COOHo-CH3C6H4COOHo-ClC6H4COOHCH3COOH | CH3OHCH3OHCH3OHC2H5OH | 40404025 | A2A2A2A2 | -24.00-29.60-27.90-35.70 | ||
CCl3COOHp-CH3OC6H4COOCH3C6H5COOCH3p-NO2C6H4COOCH3(CH3)3CBr(CH3)3CCl(CH3)3CJ(CH3)3CCl(CH3)3CCl | C2H5OHCH3OH-H2O (6:4)CH3OH-H2O (6:4)CH3OH-H2O (6:4)C2H5OH-H2O (4:1)C2H5OH-H2O (4:1)C2H5OH-H2O (4:1)CH3OHC2H5OH | 253030302525252525 | A2A2A2A2A1A1A1A1A1 | -33.60-29.80-30.50-30.70+0.27-7.06+0.79-4.51-5.50 |
З табл. 1.1 видно, що величина ентропії активації ΔS# для реакцій, що йдуть за механізмом А2
менша, ніж для реакцій механізму А1:
Прітчард та Лонг [7] вивчали реакції з моно- та дизаміщеними оксидами етилену. Вони виявили, що залежність у координатах lg k─σ* (де k – константа швидкості першого порядку; σ* - параметр Тафта) має нелінійний характер у випадку 1,1 – дизаміщених епоксидів. До цього моменту вони інтерпритували свої результати як протікання гідролізу за механізмом А1 у всіх випадках. Отже, Прітчард та Лонг прийшли висновку, що 1,1 – дизаміщені епоксиди є відхиленням від механізму А1 [7].
Найбільш вивченими є реакції оксиду пропілену, при взаємодії якого з кислотами утворюється суміш ізомерів. Кількість продукту аномального приєднання складає від 20 до 50% у залежності від природи кислоти (були вивчені оцтова, ди-, та три хлороцтова, акрилова та метакрилова кислоти), наявності каталізатора та його природи, а також температури [6].
При взаємодії з кислотами оксиду стиролу утворюється переважно аномальний продукт, причому можлива його подальша ізомеризація у нормальний [6].
У результаті реакції фенілгліцидилового ефіру з капроновою кислотою у присутності гідроксидів калію, натрію, ацетату натрію, тригептиламіну та без каталізатору утворюється 3 - 5% продукту аномального приєднання [6].
Дані про продукти взаємодії карбонових кислот з епіхлоргідрином надто обмежені. Так Бігот вказував, що в результаті реакції еквівалентних кількостей епіхлоргідрину та оцтової кислоти при 1800С в основному утворюється 1,2 – хлоргідриновий ефір, але є і деяка кількість 1,3 – ізомеру, а в реакції епіхлоргідрину з акриловою та метакриловою кислотами аномального продукту не спостерігалося [6].
1.3 Напрямок розкриття α-оксидного кільця в реакції епіхлоргідрину з карбоновими кислотами при основному каталізі
Для дослідження напрямку розкриття α-оксидного кільця епіхлоргідрину масляною, півалевою (триметилоцтовою) та бензойною кислотами у присутності ряду основних каталізаторів були використані методи газо-рідинної хроматографії (ГРХ) та протонного магнітного резонансу (ПМР). Реакцію проводили у двократному надлишку епіхлоргідрину при температурі 80 – 1100С. У якості каталізаторів використовували триетиламін, тетраетиламоній йодид, гідроксид, хлорид та гідроортофосфат натрію у кількості 0,05 моль на 1 моль кислоти [6].
Методами елементного та функційного аналізу, а також ІЧ спектроскопії встановлено, що основним продуктом реакції (вихід 80 - 97%) є хлоргідриновий ефір карбонової кислоти [6].
Продукти реакції були досліджені методом ГРХ.
Рис. 1.1 Хроматограма суміші хлоргідринових ефірів масляної кислоти: 1 - 1,2-хлоргідриновий ефір; 2 - 1,3-хлоргідриновий ефір [6]
З рис. 1.1 видно, що хлоргідриновому ефіру відповідають два неповністю розділених піки, тобто у його складі наявні два ізомери, які неможливо розділити перегонкою [6].
Для підтвердження утворення аномального ізомеру було використано спектроскопію ПМР.
Рис. 1.2 ПМР спектри хлоргідринових ефірів масляної (а), півалевої (б), та бензойної (в) кислот [6]
Наявність резонансу метинового протону в області 5,2 – 4,9 м.д., обумовленого складноефірною групою, свідчить про присутність 1,3 – хлоргіринового ефіру. Кількість ізомеру, яка визначена методами ГРХ та ПМР, співпадає та складає 15 - 20% [6].
У табл. 1.2 наведені дані про ізомерний склад хлоргідринових ефірів, які отримані у різних умовах.
Таблиця 1.2 - Ізомерний склад хлоргідринових ефірів карбонових кислот в реакції ЕХГ з масляною, півалевою та бензойною кислотами в присутності каталізаторів основної природи [6]
Каталізатор | t, 0С | Кислота | Вміст 1,3-ХГЕ, %(за даними ГРХ) |
NaOH(C2H5)4NJ(C2H5)3NNa2HPO4NaClNaOHNaOHNaOH(C2H5)4NJ(C2H5)4NJ(C2H5)4NJ(C2H5)4NJ | 808080808080901008090100110 | CH3CH2CH2COOHCH3CH2CH2COOHCH3CH2CH2COOHCH3CH2CH2COOHCH3CH2CH2COOH(CH3)3CCOOH(CH3)3CCOOH(CH3)3CCOOH(CH3)3CCOOH(CH3)3CCOOH(CH3)3CCOOH(CH3)3CCOOH | 21.918.117.115.114.715.317.518.318.017.818.018.0 |
З табл. 1.2 випливає, що зміна умов проведення реакції (природа каталізатора та температура) мало впливають на ізомерний склад продуктів взаємодії епіхлоргідрину з карбоновими кислотами [6].
1.4 Вплив структури кислотного реагенту на швидкість реакції