На каждые четыре электрона, проходящие через комплекс, фермент принимает четыре субстратные Н+ из матрикса (N-side) для восстановления О2 в Н2О. Так же фермент использует энергию этой реакции для переноса через мембрану в межмембранное пространство одного Н+ на каждый перенесенный электрон.
Суммарная реакция, катализируемая цитохромоксидазой:
4 Cyt c (red) + 8 Н+N + О2 →4 Cyt c (ox) + 4 Н+p + Н2О
Это четырехэлектронное восстановление О2 затрагивает редокс центры, которые несут только по одному электрону, что вызывает образование интермидиатов (перекиси водорода и гидроксильного радикала), которые связываются комплексом до образования воды.
В итоге, на каждую пару электронов, переносимую на молекулу О2 приходиться четыре Н+, выкаченных комплексом I, четыре – комплексом III и два – комплексом IV (рис. 22).
Векторное уравнение этого процесса можно записать следующим образом:
NADH + 11 Н+N + 1/2О2 → NAD+ + 10 Н+p + Н2О
Таким образом, перенос двух электронов от NADH к О2 сопровождается переносом через мембрану 10 Н+, в результате чего протоны в межмембранном пространстве накапливаются, создавая протонный градиент. Н+-АТФ-синтаза – фермент, катализирующий фосфорилирование АДФ неорганическим фосфатом с образование АТФ за счет электрохимическая энергия протонного градиента ΔμН. Синтез АТФ сопряжен с обратным потоком протонов из межмембранного пространства в матрикс.
Первой была открыта и изучена бактериальная Н+АТФ-синтаза, митохондриальная Н+АТФ-синтаза имеет аналогичное строение.
Н+-транслоцирующая АТФ-синтаза E.coli состоит из двух субкомплексов: встроенного в мембрану протонного канала (F0) и каталитической субъединицы (F1), выступающей в матрикс (рис.23). Фактор F0 состоит из трех типов субъединиц (а (30 кДа), b (17 кДа), с (8 кДа)), а фактор F1-из пяти (α (55 кДа), β (50 кДа), γ (31,5 кДа), δ (19,5 кДа), ε (15 кДа)) (рис. 25). Так, «головка» каталитической части образована тремя α- и тремя β- субъединицами, между которыми расположены три активных центра. "Ствол" структуры образуют полипептиды F0-части и γ-, δ- и ε-субъединиц головки.
Митохондриальная Н+АТФ-синтаза гомологична бактериальной, но несколько тяжелее и сложнее устроена. Так, в Н+АТФ-синтазе митохондрий присутствуют пять полипептидов, которые отсутствуют у бактерий: ε-субъединица фактора F1 (5,5 кДа), субъединица AL6 фактора F0 (22 кДа), фактор F6 (9 кДа), белковый ингибитор фактора F1 (9,5 кДа), субъединица правильного связывания F1 с F0 (18,5 кДа). Белок OSCP – это белок, обусловливающий чувствительность к олигомицину. Он необходим для правильного связывания F1 с F0. Крупные α- и β- субъединицы очень консервативны (70% сходства), а белок OSCP гомологичен частям δ- и b- субъединиц E.coli, субъединица 9 гомологична субъединице с E.coli.
У животных и дрожжей все субъединицы фактора F1 кодируются ядерным геномом и синтезируются в цитоплазме; у растений, α-субъединица закодирована в мтДНК, а β- субъединица – в ядре, другие сведения отсутствуют.
Н+АТФ-синтаза – это очень массивный белковый комплекс, локализованный во внутренней мембране митохондрий. Н+АТФ-синтаза сильно выдается своей каталитической частью (фактором F1) в матрикс митохондрии. Каталитический цикл (рис.26) подразделяется на три фазы, каждая из которых проходит поочередно в трех активных центрах. Вначале происходит связывание АДФ и Фн (1), затем образуется фосфоангидридная связь (2) и, наконец, освобождается конечный продукт реакции – АТФ (3). При каждом переносе протона через белковый канал F0, в матрикс все три активных центра катализируют очередную стадию реакции.
Согласно хемиосмотической концепции, движение электронов по дыхательной цепи является источником энергии для транслокации протонов через митохондриальную мембрану. Возникающая при этом разность электрохимических потенциалов (ΔμH+) приводит в действие АТФ-синтазу, катализирующую реакцию АДФ+ Фн D АТФ.
В дыхательной цепи есть только 3 участка, где перенос электронов сопряжен с накоплением энергии, достаточным для образованияАТФ, на других этапах возникающая разность потенциалов для этого процесса недостаточна. Максимальная величина коэффициента фосфорилирования, таким образом, составляет 3, если реакция окисления идет с участием НАД+, и 2, если окисление субстрата протекает через флавиновые дегидрогеназы. Теоретически еще одну молекулу АТФ можно получить в трансгидрогеназной реакции (если процесс начинается с восстановленного НАДФ):
НАДФН + НАД+ D НАДФ+ + НАДН + 30 кДж/моль.
Обычно в тканях восстановленный НАДФ используется в пластическом обмене, обеспечивая разнообразные синтетические процессы, так что равновесие трансгидрогеназной реакции сильно сдвинуто влево.
Эффективность окислительного фосфорилирования в митохондриях определяется как отношение величины образовавшегося АТФ к поглощенному кислороду: АТФ/О или Р/О (коэффициент фосфорилирования). Экспериментально определяемые значения Р/О, как правило, оказываются меньше 3. Это свидетельствует о том, что процесс дыхания не полностью сопряжен с фосфорилированием. Действительно, окислительное фосфорилирование, в отличие от субстратного, не является процессом, в котором окисление жестко сопряжено с образованием макроэргов. Степень сопряжения зависит главным образом от целостности митохондриальной мембраны, сберегающей разность потенциалов, создаваемую транспортом электронов. По этой причине соединения, обеспечивающие протонную проводимость (например, 2,4-ди-нитрофенол), являются разобщителями.
В норме скорость митохондриального транспорта электронов регулируется содержанием АДФ. Выполнение клеткой функций с затратой АТФ приводит к накоплению АДФ, который в свою очередь активирует тканевое дыхание. Таким образом, клетки реагируют на интенсивность клеточного метаболизма и поддерживают запасы АТФ на необходимом уровне, т.е. осуществляют дыхательный контроль.
За сутки человек потребляет около 550 л (24,75 моля) кислорода. Если считать, что в тканевом дыхании за этот период восстанавливается 40 г атомов кислорода (20 молей), а величину Р/О принять за 2,5, то в митохондриях должно синтезироваться 100 молей, или около 50 кг АТФ! При этом часть энергии окисления субстратов расходуется на совершение полезной работы, не превращаясь в АТФ.
В дыхательной цепи электроны не всегда достигают места назначения – нередко они выпа-дают из цепи, образуя активные формы кислорода (АФК), концентрация которых в матриксе в 5-10 раз превышает содержание оных в цитоплазме. Что же собой представляют АФК?
Антиоксиданты и механизм образования активных форм кислорода в клетке.
Механизм образования активных форм кислорода
Потребляемый организмом кислород практически полностью (95-98%) расходуется на выработку энергии и окислительный катаболизм субстратов, и лишь малая его часть переходит в активные формы кислорода (уровень АФК в тканях равен примерно 10-8М).
Конфигурация внешней электронной оболочки атома кислорода 2S22P4 . Молекула кислорода двухатомна. В основном состоянии (триплетное 3∑-g) два валентных электрона молекулы О2, находящиеся на разрыхляющих орбиталях πх и πу, не спарены (рис. 25) и, таким образом, молекула кислорода является бирадикалом. Помимо основного, существуют еще два долгоживущих возбужденных состояния О2 - синглетное 1Δg (энергия возбуждения 94,1 кДж/моль, время жизни 45 мин) и синглетное 1∑+g (энергия возбуждения 156,8 кДж/моль).
Рисунок 25: Схема распределения электроном по атомным орбиталям молекулы кислорода.
Существует также аллотропная модификация кислорода - азон О3.Озон образует озониды, в которых ионная форма кислорода - О-3. Молекула кислорода образует три различные ионные формы, каждая из которых дает начало классу соединений: О-2 - супероксидам, О22- - пeроксидам, О+2 - диоксигенильным соeдинениям.
Молекула кислорода, присоединяя дополнительный электрон, образует высоко реакцион-носпособный супероксид-радикал (•О2-). Супероксид может порождать вторичные АФК:
- присоединяя еще один электрон, образует короткоживущий пероксид-анион (•О22-), который легко связывает протоны и вследствие этого переходит в Н2О2
- присоединяя NO, образует пероксинитрит (образуется при избытке О2-)
- переводит трехвалентное железо Fe3+ в двухвалентное Fe2+, которое при взаимо-действии с Н2О2, НClО и липоперекисями образует гидроксильный радикал ОН* или липоксильный радикал LO* (образуется при избытке О2-)