- присоединяя 2 протона и электрон, образует перекись кислорода Н2О2 (основной продукт).
Присоединение электрона к Н2О2 ведет к расщеплению молекулы на ионы О2- и О- . В то время как О2- путем присоединения двух протоны образует воду, протонирование О- приводит к особо опасному гидроксил-радикалу (ОН-). Присоединение еще одного электрона и заключительное протонирование ОН- заканчивается образованием воды (рис. 26).
Донорами электронов могут быть Fe2+, Cu+ (из активных центров) или семихиноны, а для второй и третей реакций – также и О2-:
Рисунок 26: АФК.
В клетке активные формы кислорода возникают в результате различных окислитель-восстановительных реакций, протекающих в ней. К АФК относятся супероксид анион-радикал O2.- , перекись водорода H2O2, гидроксильный радикал (ОН-), синглетный O2, озон O3, гипохлорид НClО, окись азота NO и ряд других кислородсодержащих веществ, обладающих высокой окислительной активностью и способных повреждать редокс-чувствительные компоненты клетки, прежде всего белки, липиды и нуклеиновые кислоты.
Раньше полагали, что АФК являются исключительно токсичными для клетки метаболитами и поэтому в клетке существует множество систем для борьбы с ними. Но по мере изучения АФК стало ясно, что они не всегда пагубно влияют на клетку.
К настоящему времени накопилось немало сведений о сигнальной роли АФК, хотя конкретных метаболических путей, в которых могут участвовать АФК, в большинстве случаев еще не выявили. Так, например, есть данные, что АФК участвуют в качестве сигнальных молекул при активации транскрипционных факторов AP-1 и NF-κB и индукции экспрессии генов при иммунном ответе. АФК могут выступать и в качестве индукторов клеточной гибели или наоборот, ингибировать цитотоксическое действие терапевтических препаратов на опухолевые клетки [44]. Возможно, что АФК могут выступать в роли митотических стимуляторов.
Существуют также данные об участии АФК в регуляции редокс-статуса и окислительных модификаций белков.
Регуляция редокс-сигнализации может осуществляться как через общий уровень глутатиона (GSH) в клетке, так и через соотношение GSH/GSSH (рис.29). Глутатион (трипептид Glu-Cys-Gly) находитсяся почти во всех клетках в высокой концентрации и содержит нетипичную γ-связь между Glu и Cys. Восстановителем здесь является тиольная группа цистеинового остатка. Две молекулы восстановленной формы (GSH) при окислении образуют дисульфид (GSSG) (рис. 27). Окислительные модификации затрагивают, как правило, остатки цистеина в функциональных доменах различных белков, приводя к инактивации ферментов, изменению способности связывания транскрипционных факторов с ДНК и другим функциональным нарушениям. При понижении уровня восстановленного глутатиона нарушается проведение сигнала от ряда рецепторов факторов роста и связывание транскрипционных факторов с ДНК, подавляется рост и размножение многих клеточных типов.
Рисунок 27: Глутатион.
Источником АФК в клетке является множество различных ферментативных и неферментативных систем. Одним из главных генераторов АФК в клетке являются пероксисомы, в которых локализован целый ряд образующих перекись водорода ферментов. Эта перекись используется клеткой в основном для детоксикации ксенобиотиков, и практически вся утилизируется внутри этих органелл. В гладком эндоплазматическом ретикулуме локализован ряд цитохром-зависимых оксигеназ, продуцирующих супероксид O2.–. Очень много образуется АФК в эритроцитах. В плазмалемме макрофагов и эндотелиоцитов существует НАД(Ф)Н-оксидазная система, продуцирующая супероксид анион в ходе иммунного и воспалительного ответа. Остеокласты (специализированные макрофаги) применяют АФК для разрушения кости – обязательное условие ее обновления. При этом клетки-защитники быстро поглощают большое количество O2 (дыхательный взрыв), образуя внешней стороны мембраны супероксид O2.– за счет окисления цитозольного НАД(Ф)Н.
В клетках образование АФК происходит еще и потому, что в дыхательной цепи митохондрий происходит утечка электронов с комплексов I и III и за счет этого в среднем около 2% поступающего кислорода переходит в активную форму, при этом часть АФК идет на оксидативную модификацию макромолекул. Продукция O2.– в митохондриях осуществляется несколькими различными путями и значительно зависит от активности дыхания (состояние 3 или 4) и изменений парциального давления кислорода (гипоксия или реоксигенация). Митохондрии более всех других органелл подвержены атаке АФК и, как следствию, повреждению мембранных липидов, углеводов, белков и ДНК, причем для гибели митохондриям не требуется никаких дополнительных белков, кроме тех, которые присутствуют в них самих. Окислительный стресс является причиной множества дегенеративных заболеваний, старения и гибели клетки.
Основным местом утечки электронов из дыхательной цепи и, следовательно, образования O2.– является убихинол цитохром с оксидоредуктаза, где генерация происходит за счет одноэлектронного восстановления молекулярного кислорода от убисемихинона [43]. В НАДН-убихинон-редуктазе источником O2.– служит семихиноновая форма флавина. При изменении интенсивности потока электронов и степени восстановленности компонентов дыхательной цепи митохондрий йзменяется и количество выпадающих электронов. Так, например, в присутствии цианида и ротенона продукция супероксида понижается, а при добавлении ингибитора комплекса III антимицин А (приводит к увеличению пула семихинонов), образование АФК в следствии окисления субстрата I или II комплексами увеличивается, в то время как (рис.28).
В условиях высокого Δψ в дыхательной цепи усиливается обратный транспорт элект-ронов, и тогда главным продуцентом супероксида становиться комплекс I. При повыше-нии митохондриального трансмембранного потенциала (Δψ) становится дыхательная цепь становиться более восстановленной, что увеличивает образование АФК в Q-цикле.
Рисунок 28: Электрон-транспортная цепь и сайты генерации АФК. Антиоксидантные системы клетки[15]
Как уже было сказано выше, АФК очень реакционноспособные и легко переходят из одной формы в другую (рис. 29), окисляя при этом различные молекулы. Так, в результате утечки электронов из дыхательной цепи и в реакциях НАД(Ф)Н-оксидазы и ксантин-оксидазы первым образуется супероксид анион радикал, который очень быстро дисмутирует до перекиси водорода.
Из всевозможных восстановленных форм кислорода перекись водорода является самым стабильным соединением и обладает меньшей реакционной способностью, нежели другие формы. Молекула H2O2 способна перемещаться в клетке на значительные расстояния и довольно долго сохраняться в ней. Скорее всего, перекись не достаточно активна, чтобы как-то сильно повредить клеточным структурам, а играет роль сигнальной молекулы. При этом в присутствии активаторов, как-то: ионов меди и ионов железа (образуются при окислении железо - серных центров ряда ферментов кислородными радикалами), - из перекиси и супероксида образуется гидроксильный радикал. Гидроксильный радикал является самым опасным и обладает наивысшей реакционной способностью среди всех АФК. Он мог бы разрушить практически все клеточные структуры, но имеет очень маленькое время жизни (около нескольких наносекунд) и не способен диффундировать на значительные расстояния от места образования.
Также супероксид способен реагировать с оксидом азота (II) (обладает сосудо-расширяющим действием) с образованием активного оксиданта пероксинитрита.
При избытке супероксида, он может переводить трехвалентное железо Fe3+ в двухвалентное Fe2+, которое при взаимодействии с Н2О2, НClО и липоперекисями образует гидроксильный радикал ОН* или липоксильный радикал LO*.
+H+
Fe2+ + H2O2 [(FeIV=O)2+ + H2O] Fe3+ + H2O + HO. Cu+ + H2O2+ H+ [(CuIII-OH)2+ + H2O] Cu2+ + H2O + HO.Рисунок 29: Переход из одних форм АФК в другие и воздействие на клетку.
Когда митохондрии перестают справляться с проблемой детоксикации образуемых ими АФК, усиливается дисбаланс между их (АФК) генерацией и нейтрализацией, что приводит к так называемому окислительному стрессу. В результате избыточного образования кислородных радикалов, последние начинают выполнять в основном деструктивные функции, нежели служат в качестве сигнальных молекул. Происходят специфические изменения множества клеточных компонентов: повреждаются мембранные структуры из-за перекисного окисления липидов, происходит окисление белков по остаткам тирозина, цистеина и серина, повреждение ДНК, смещение редокс-потенциала клетки из-за окисления глутатиона и НАД(Ф)Н.
Так, примером действие АФК в условиях, способствующих их избыточному образованию, может служить избыток O2 , особенно при гипербарической оксигенации (лечение кислородом под повышенным давление), сильного спазма (характерен для инфаркта миокарда или инсульта головного мозга) и реперфузии миокарда после периода ишемии (возобновление кровотока после его нарушения из-за тромбоза, т.е. закупорки сосуда), сопровождающаяся развитием повреждений, сопоставимых по степени с возникшими в результате самой ишемии. Механизм образования АФК при реперфузии, вероятно, обусловлен созданием условий, благоприятствующих образованию вторичных радикалов. Во время ишемии парциальное давление кислорода в кардиомиоцитах резко снижается, и это сопровождается переходом окисленных атомов железа Fe3+ в восстановленные Fe2+, а также повышением активности ксантиноксидазы. Оба эти компонента при появлении в цитоплазме больших количеств кислорода в начале реперфузии резко активируют образование ОН*, и возникающее под действием этого радикала повреждение клеточных структур может приобретать необратимый характер, что вызывает развитие апоптоза