Московский Государственный Университет
им. М. В. Ломоносова
Факультет Биоинженерии и Биоинформатики.
Курсовая работа студента IV курса Салимоновой Татьяны на тему:
Участие аналогов убихинона в переносе электронов в дыхательной цепи митохондрий.
Научный руководитель: кбн Высоких Михаил Юрьевич
Содержание
Митохондрии.............................................................................................................................................. 3
Локализация митохондрий в цитозоле разных типах клеток......................................................... 3
Взаимодействие митохондрий с цитоскелетом................................................................................ 4
Морфология митохондрий.................................................................................................................. 6
Митохондриальный матрикс................................................................................................... 6
Митохондриальный геном ....................................................................................... 7
Эволюционное происхождение митохондрий......................................................... 8
Внутренняя митохондриальная мембрана............................................................................. 9
Межмембранное пространство............................................................................................ 13
Внешняя митохондриальная мембрана................................................................................. 13
Внешняя и внутренняя мембраны - транспорт белков в митохондрию........................... 13
Метаболические функции митохондрий.............................................................................. 14
Дыхательная цепь................................................................................................................................... 16
Открытие дыхательной цепи............................................................................................................ 16
Организация дыхательной цепи....................................................................................................... 17
Комплекс I или НАДН-убихинон-редуктаза.......................................................................... 18
Комплекс II (или сукцинатдегидрогеназа)............................................................................ 20
Кофермент Q........................................................................................................................... 21
Метаболизм кофермента Q ..................................................................................... 21
Функции кофермента Q: ..................................................................................... 22
Физико-химические свойства кофермента Q......................................................... 23
Комплекс III (комплекс bc1 или убихинол цитохром с оксидоредуктаза)......................... 26
Цитохром с.............................................................................................................................. 28
Комплекс IV (цитохромоксидаза).......................................................................................... 28
Н+-АТФ-синтаза..................................................................................................................... 30
Антиоксиданты и механизм образования активных форм кислорода в клетке......................... 32
Механизм образования активных форм кислорода............................................................. 32
Антиоксиданты...................................................................................................................... 38
Аналоги убихинона........................................................................................................................... 44
Список литературы:............................................................................................................................... 51
Митохондрии - это органеллы размером с бактерию (около 1*2 мкм). Они представляют собой окруженные двойной мембраной органеллы, специализирующиеся на синтезе АТФ (рис. 5). В среднем на клетку приходится примерно 2000 митохондрий, общий объем которых составляет до 25% от объема клетки. Количество митохондрий в клетке зависит от ее функции и размеров - например, в гепатоците содержится примерно 800 митохондрий, в ооците человека - около 100000 митохондрий, а в сперматозоиде - всего несколько.
Митохондрии не имеют строго фиксированной формы, размера и локализации в клетке, которые могут различаться у разных типов клеток. Так, например, у гепатоцитов и фибробластов митохондрии вытянутые, а размер их составляет 3-4 m в длину и 1 m в ширину.
Локализация митохондрий в цитозоле разных типах клеток
В больших и ассиметричных клетках митохондрии обычно сосредоточены в местах повышенного потребления АТФ. В сперматозоиде митохондрии собраны в спираль вокруг аксонемы (это осевая нить жгутика сперматозоида - сложноорганизованный цитоскелетный комплекс), что обеспечивает его движение .
В скелетных мышцах митохондрии образуют митохондриальный ретикулум – единую митохондриальную сеть. На уровне z-дисков миофибрилл располагаются гигантские разветвленные митохондрии (рис.2), которые окружают каждую миофибриллу и снабжают ее АТФ, необходимым для мышечного сокращения. Таким образом, получаются “пласты” или “этажи” митохондрий, повторяющиеся дважды на каждый саркомер. Между “этажами ” вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна.
Интересно, что в клетках сердечной мышцы обнаружены митохондрии двух типов: одни локализованы непосредственно под сарколеммой, а другие между миофибриллами (субсарколеммарные митохондриии окисляют субстраты в 1,5 раза эффективнее межмиофибриллярных). Эти митохондрии так же образуют сеть.
Рисунок 2.Распределение митохондрий в скелетных мышцах между саркомерами: м - митохондрия, ф - фибрилла, с - саркомер
Высоко регулярное распределение митохондрий также присуще поперечно-полосатым летательным мышцам насекомых. В палочковидной зрительной клетке (анализатор сетчатки) митохондрии сконцентрированы в протопласте ближе к выступающей в стекловидное тело глаза части клетки (рис.3).
В круглых дрожжевых клетках или в гаметах Chlamydomonas митохондрии распределены по периферии клеток, возможно для максимально эффективного доступа кислорода.
Таким образом, митохондрии локализуются в клетке в местах повышенного потребления АТФ, но способны перемещаться при изменении АТФ/АДФ градиента.
Взаимодействие митохондрий с цитоскелетом
Взаимодействие с цитоскелетом было описано только с применением индивидуальных флуоресцентных меток для митохондрий и микротрубочек [2,3]. После этого подобные взаимодействия были описаны для различных типов клеток млекопитающих [4].
Цитоплазма эукариотических клеток пронизана трехмерной сеткой из белковых нитей (филаментов), называемой цитоскелетом. В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (6-8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Все эти волокна представляют собой полимеры, состоящие из субъединиц особых глобулярных белков.
Микрофиламенты (актиновые нити) состоят из плотно упакованной спирали из ориентированных глобулярных (G) актиновых мономеров [56]. В мышцах млекопитающих обнаружен α-актин , а β- и γ-актины составляют микрофиламенты немышечных клеток.
Структурными элементами промежуточных волокон являются белки, принадлежащие к пяти родственным семействам и проявляющие высокую степень клеточной специфичности [62]. Все эти белки имеют в центральной части базовую стержневую структуру, которая носит название суперспирализованной α-спирали.
Микротрубочки построены из глобулярного белка тубулина, представляющего собой димер α и β-субъединиц (53 и 55 кДа) [65]. Протофиламенты – это линейные цепочки, образованные α и β- гетеродимерами. Эти протофиламенты образуют кольца (по 13 штук в каждом), которые полимеризуются в длинную трубку.Микротрубочка (МТ) представляет собой высоко динамичную полярную структуру, имеющую минус-конец, локализованный на центросоме, вблизи ядра, и медленно растущий или быстро разбирающийся плюс-конец.
Цитоскелет служит клетке механическим каркасом и “рельсами” для транспорта органелл и других крупных комплексов внутри клетки. Митохондрии перемещаются вдоль цитоскелетных фибрилл с помощью молекулярных моторов. Структурные белки, входящие в состав молекулярных моторов, относятся к трем семействам: кинезины, цитоплазматические динеины и миозины.
Одним из наиболее изученных клеточных моторов является кинезин. Молекула кинезина представляет собой димер, образованный двумя одинаковыми полипептидными цепями. с одной стороны каждой полипептидной цепи кинезина формируется глобулярная головка, соединенная со сравнительно длинным хвостом. Хвосты двух мономерных цепей сплетены вместе, а наклоненные в разные стороны головки образуют своеобразную рогатину, которая непосредственно взаимодействует с глобулярными мономерами микротрубочки, вдоль которой перемещается кинезин (рис. 4).
Каждая из двух головок кинезина обладает АТРазной активностью. Связывание и гидролиз молекулы АТФ в активном центре кинезина, а также последующие события, вызванные диссоциацией AДФ и Фн, сопровождаются изменением положения головок относительно тубулиновых мономеров, в результате чего кинезин перемещается вдоль микротрубочки. Работа головок кинезина хорошо скоординирована: связывание и гидролиз молекулы АТФ одной головкой димерного комплекса способствует освобождению молекулы АДФ из активного центра другой головки. Головки кинезина попеременно связываются с мономерными звеньями микротрубочки. За одну секунду кинезина делает приблизительно 100 шагов, перемещаясь за это время на расстояние 800 нм [5].
В митохондриях можно выделить четыре субкомпартмента: митохондриальный матрикс, внутреннюю мембрану, межмембранное пространство и внешнюю мембрану, обращенную к цитозолю (рис. 5).
Рисунок 5: Митохондрии из цетроацинозной клетки поджелудочной железы: внеш – внешняя мембрана, мп – межмембранное пространство, внутр – внутренняя мембрана, к – криста митохондрии, м –матрикс митохондрии.