Смекни!
smekni.com

Концепции современного естествознания 14 (стр. 22 из 57)

Развитие квантовой химии позволило рассмотреть на микроуровне протекание реакций, отдельные молекулы и их электронные структуры. Использование термодинамического подхода, описывающего не отдельные объекты, а систему в целом, позволяет глубже понять тенденции протекания реакций.

Свободные радикалы. В прошлом столетии только два типа частиц считали участвующими в химических реакциях: атомы и молекулы. В 1900 г. Мозес Гомберг (Украина) обнаружил третью – свободный радикал. Он выделил некоторое соединение, способное вступать в реакции, и доказал, что оно представляет из себя половину молекулы (обозначается точкой над символом, например,

).

Подводя некоторый итог, можно сказать, что при химических превращениях на первый план выступают реакционная способность, энергетические и энтропийные возможности, каталитические и кинетические закономерности.

Химическое равновесие и принцип Ле-Шателье. В общем случае, в химической системе имеют место как прямые, так и обратные реакции, причем большинство химических реакций не идут до конца. Здесь становится важным понятие равновесия между прямой и обратной реакциями. В какой-то момент их скорости сравняются, и в данной системе при данных условиях установится динамическое равновесие. Вывести систему из равновесия можно, только изменив условия согласно принципу, предложенному в 1884 г. Анри Луи Ле Шателье (1850-1936): «если в системе, находящейся в равновесии, изменить один из факторов равновесия. Например, увеличить давление, то произойдет реакция, сопровождающаяся уменьшением объема, и наоборот. Если же такие реакции происходят без изменения объема, то изменение давления не будет влиять на равновесие». Другая, современная формулировка этого принципа следующая:

Внешнее воздействие, которое выводит систему из термодинамического равновесия, вызывает в ней процессы, направленные на ослабление результатов такого воздействия.

Ле Шателье применял этот закон в промышленных условиях для оптимизации синтеза аммиака, производства стекла и цемента, выплавки металлов, получения взрывчатых веществ. Как оказалось, катализаторы не влияют на положение равновесия: они одинаково влияют на прямую и обратную реакции, ускоряют достижение равновесия, но не сдвигают его.

В настоящее время принцип Ле Шателье рассматривается как общий принцип стабильности, согласующий взаимосвязи между элементами Вселенной (Универсума), в своей расширенной трактовке он может быть распространен на живые системы, на социальные системы. Так, с появлением жизни возникает принцип отбора, основанный на стремлении живого сохранить свой гомеостаз, т.е. целостность и равновесие, как самого организма, так и популяции. Принцип Ле Шателье, таким образом, связан с глубокими основами мироздания.

5. Макроскопические тела. Фазовые переходы.

Все, конечно, помнят одно из простых, но весьма важных утверждений школьного курса физики, что вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Тепловое движение частиц (атомов и молекул) в каждом агрегатном состоянии имеет свои особенности.

В газах обычно расстояние между атомами и молекулами значительно больше размеров молекул. На таких расстояниях силы взаимодействия между частицами практически отсутствуют. Это приводит к тому, что газы легко сжимаются (нет сил отталкивания) и обладают свойством неограниченно расширяться (занимать полностью предоставленный им объем), что равносильно отсутствию сил притяжения. Газ, в котором можно не учитывать силы взаимодействия между частицами и собственный объем частиц, называется идеальным.

В твердом теле молекулы и атомы совершают беспорядочные колебания относительно положений равновесия, в которых силы притяжения и отталкивания со стороны соседних атомов уравновешиваются, т.е. результирующая сила равна нулю. Твердые тела можно разделить на аморфные и кристаллические. В аморфных телах физические свойства (механические, тепловые, электрические, оптические) одинаковы во всех направлениях. В этом проявляется изотропность аморфных тел. Объясняется это тем, что атомы и молекулы в таких телах расположены беспорядочно. В кристаллических телах атомы и молекулы расположены в определенном порядке, поэтому физические свойства таких тел неодинаковы в различных направлениях, т.е. кристаллические тела анизотропны. Если через атомы кристалла мысленно провести линии, то получится решетка, называемая кристаллической.

Жидкости занимают промежуточное положение между твердыми телами и газами. Как показали исследования их структуры, молекулы жидкости некоторое время (т.н. время оседлой жизни) колеблются около положений равновесия. Через некоторое время они перескакивают в новые положения равновесия и колеблются относительно них. Именно эти перескоки молекул и являются причиной текучести жидкости, т.е. ее способности принимать форму сосуда. Взаимное расположение соседних молекул в жидкости в определенной степени упорядочено, но на расстоянии 3..4d, где d – диаметр молекулы, этот порядок нарушается. Вот почему говорят, что в жидкостях существует ближний порядок. ( Порядок в кристаллических телах называют дальним).

Различие между жидким, твердым и газообразным состоянием можно объяснить и с энергетической точки зрения, воспользовавшись зависимостью потенциальной энергии взаимодействия молекул вещества от расстояния между ними (рис.5).

В состоянии r = r0 потенциальная энергия взаимодействия молекул минимальна.

Значения средней кинетической энергии теплового движения отложим от дна потенциальной ямы В. АВ – глубина потенциальной ямы.

Если средняя кинетическая энергия теплового движения Е1 << АВ, то частицы не могут ее преодолеть и будут совершать колебания около положения равновесия. Тело будет находиться в твердом состоянии.

Если Е ~ АВ, то молекулы будут совершать колебания с большой амплитудой и флуктуации энергии могут привести к выходу их за пределы данной потенциальной ямы и совершать колебания относительно новых положений равновесия. Это соответствует жидкому состоянию вещества.

Если Е>>АВ, то молекулы будут свободно выходить за пределы данной потенциальной ямы, почти не «ощущая» на себе ее влияния, т.е. связи с другими молекулами. Это соответствует газу.

Переходы вещества из одного состояния в другое называются фазовыми переходами I рода. Из сказанного выше ясно, что как агрегатное состояние вещества, так и фазовые переходы определяются внешними условиями: температурой и давлением. При высокой температуре и низком давлении мы имеем газ, при низкой температуре и высоком давлении – твердое тело. Промежуточные условия соответствуют жидкому состоянию. Графически равновесие между жидкостью и ее насыщенным паром, между жидкостью и твердым состоянием можно представить на диаграмме состояния вещества (рис.6).

Если на такой диаграмме построить для данного вещества кривые кипения, плавления и сублимации (испарения твердого вещества), то они пересекутся в одной точке М. В ней одновременно сходятся три фазы: жидкая, твердая, газообразная, поэтому эта точка называется тройной. Диаграмма состояния вещества позволяет предсказывать, в каком состоянии будет находиться вещество при различных условиях, что исключительно важно для практики.

Контрольные вопросы

1. Какие структурные уровни материи выделяются современным естествознанием? На основании каких признаков формируются эти уровни?
2. Объясните понятия «элементарная частица», «фундаментальная частица».
3. Объясните понятие «частицы – переносчики фундаментальных взаимодействий».
4. Какие фундаментальные частицы формируют вещество?
5. Какие частицы относят к фундаментальным? Какие из частиц, входящих в состав атома (электрон, протон, нейтрон) относятся к фундаментальным?

6. Опишите строение атомного ядра.
7. Что представляют собой ядерные силы?
8. Что такое молекула, макромолекула?
9. Назовите типы связей в молекуле. Что такое водородная связь, чем она примечательна?
10. Как влияет потенциальная энергия молекулы и сумма энергий составляющих ее атомов на ее устойчивость?

11. Что такое свободные радикалы?
12. Как объяснить направление протекания химической реакции с точки зрения термодинамики?
13. Объясните суть принципа Ле-Шателье.
14. Объясните различие между газообразным, жидким и твердым состоянием вещества на основе молекулярно-кинетической теории.
15. Объясните различие между газообразным, жидким и твердым состоянием вещества с точки зрения термодинамики.

Литература

1. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 1998.
2. Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ЮКЭА, 1997.

Лекция 13. Мегамир, основные космологические и космогонические представления (I)

1. Основные представления о мегамире 2. Солнечная система
Планеты-гиганты
Малые планеты и кометы
3. Гипотезы о возникновении планетных систем Контрольные вопросы
Литература

1. Основные представления о мегамире

Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он начинается с расстояний около 107 и масс 1020 кг. Опорной точкой начала мегамира может служить Земля (диаметр 1,28×10+7 м, масса 6×1021 кг. Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.

Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца, равное 1,5×1011м.