Смекни!
smekni.com

Концепции современного естествознания 14 (стр. 48 из 57)

Лекция 23. Принципы симметрии в научной картине мира

1. Понятие симметрии
2. Симметрия пространства – времени и законы сохранения
3. Симметрия и асимметрия живого
4. Нарушение симметрии как источник самоорганизации
Контрольные вопросы
Литература

1. Понятие симметрии

Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий. Чтобы это утверждение стало более понятным, рассмотрим подробнее понятие симметрии.

«Симметричное обозначает нечто, обладающее хорошим соотношением пропорций, а симметрия – тот вид согласованности отдельных частей, который объединяет их в целое. Красота тесно связана с симметрией», - писал Г. Вейль в своей книге «Этюды о симметрии». Он ссылается при этом не только на пространственные соотношения, т.е. геометрическую симметрию. Разновидностью симметрии он считает гармонию в музыке, указывающую на акустические приложения симметрии.

Зеркальная симметрия в геометрии относится к операциям отражения или вращения. Она достаточно широко встречается в природе. Наибольшей симметрией в природе обладают кристаллы (например, симметрия снежинок, природных кристаллов), однако не у всех из них наблюдается зеркальная симметрия. Известны так называемые оптически активные кристаллы, которые поворачивают плоскость поляризации падающего на них света. [2].

В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник. Другими словами, симметрия – это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра. Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.

В широком смысле симметрия – это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого.

Противоположным понятием является понятие асимметрии, которое отражает существующее в объективном мире нарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой. Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового.

Симметрия может быть не только геометрической. Различают геометрическую и динамическую формы симметрии (и, соответственно, асимметрии).

К геометрической форме симметрии (внешние симметрии) относятся свойства пространства – времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета и т.д.

К динамической форме относятся симметрии, выражающие свойства физических взаимодействий, например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.

Калибровочные симметрии. Важным понятием в современной физике является понятие калибровочной симметрии. Калибровочные симметрии связаны с инвариантностью относительно масштабных преобразований. Сам термин «калибровка» происходит из жаргона железнодорожников, где он означает переход с узкой колеи на широкую. Под калибровкой, таким образом, первоначально понималось именно изменение уровня или масштаба. Так в СТО физические законы не изменяются относительно переноса (сдвига) системы координат. Траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства. Таким образом, здесь работают глобальные калибровочные преобразования.

Формы симметрии являются одновременно и формами асимметрии. Так геометрические асимметрии выражают неоднородность пространства – времени, анизотропность пространства и т.д. Динамические асимметрии проявляются в различиях между протонами и нейтронами в электромагнитных взаимодействиях, различие между частицами и античастицами (по электрическому, барионному зарядам) и т.д. [3].

2. Симметрия пространства – времени и законы сохранения

Одной из важнейших особенностей геометрических симметрий является их связь с законами сохранения. Значение законов сохранения (законы сохранения импульса, энергии, заряда и др.) для науки трудно переоценить. Дело в том, что понятие симметрии применимо к любому объекту, в том числе и к физическому закону. Вспомним, что согласно принципу относительности Эйнштейна, все физические законы имеют одинаковый вид в любых инерциальных системах отсчета. Это означает, что они симметричны (инвариантны) относительно перехода от одной инерциальной системы к другой.

Теорема Нетер. Наиболее общий подход к взаимосвязи симметрий и законов сохранения содержится в знаменитой теореме Э. Нетер. В 1918 г., работая в составе группы по проблемам теории относительности, доказала теорему, упрощенная формулировка которой гласит: если свойства системы не меняются относительно какого-либо преобразования переменных, то этому соответствует некоторый закон сохранения. Рассмотрим переходы от одной инерциальной системы к другой. Поскольку есть разные способы таких переходов, то, следовательно, есть различные виды симметрии, каждому из которых, согласно теореме Нетер, должен соответствовать закон сохранения.

Переход от одной инерциальной системы (ИСО) к другой можно осуществлять следующими преобразованиями:

1. Сдвиг начала координат. Это связано с физической эквивалентностью всех точек пространства, т.е. с его однородностью. В этом случае говорят о симметрии относительно переносов в пространстве.

2. Поворот тройки осей координат. Эта возможность обусловлена одинаковостью свойств пространства во всех направлениях, т.е. изотропностью пространства и соответствует симметрии относительно поворотов.

3. Сдвиг начала отсчета по времени, соответствующий симметрии относительно переноса по времени. Этот вид симметрии связан с физической эквивалентностью различных моментов времени и однородностью времени, т.е. его равномерным течением во всех инерциальных системах –отсчета. Смысл эквивалентности различных моментов времени заключается в том, что все физические явления протекают независимо от времени их начала (при прочих равных условиях).

4. Равномерное прямолинейное движение начала отсчета со скоростью V, т.е. переход от покоящейся системы к системе, движущейся равномерно и прямолинейно. Это возможно, т.к. такие системы эквивалентны. Такую симметрию условно называют изотропностью пространства-времени. Переход же осуществляется с помощью преобразований Галилея или преобразований Лоренца.

(Важно отметить, что физические законы не являются симметричными относительно вращающихся систем отсчета. Вращение замкнутой системы отсчета можно обнаружить по действию центробежных сил, изменения плоскости качания маятника и др. Кроме того, физические законы не являются симметричными и относительно масштабных преобразований систем – т.н. преобразований подобия. Поэтому законы макромира нельзя автоматически переносить на микромир и мегамир.)

Описанные выше 4 вида симметрии являются универсальными. Это означает, что все законы Природы относительно них инвариантны с большой степенью точности, а соответствующие им законы являются фундаментальными. К этим законам относятся соответственно:

1. Закон сохранения импульса как следствие однородности пространства.
2. Закон сохранения момента импульса как следствие изотропности пространства.
3. Закон сохранения энергии как следствие однородности времени.
4. Закон сохранения скорости центра масс (следствие изотропности пространства-времени).

Как уже было сказано ранее, описанные виды симметрий относятся к геометрическим. Связь с законами сохранения обнаруживают и динамические симметрии. С динамическими симметриями связан закон сохранения электрического заряда (при превращении элементарных частиц сумма электрических зарядов частиц остается неизменной), закон сохранения лептонного заряда (при превращении элементарных частиц сумма разность числа пептонов и антилептонов не меняется) и т.д.

Так закон сохранения электрического заряда вытекает из электромагнитной калибровочной симметрии. Ее суть состоит в том, что при масштабных преобразованиях силовые характеристики электромагнитного поля (напряженность электрического поля

и индукция магнитного поля B остаются неизменными. Из этого закона вытекает, в частности, устойчивость электрона – самой мелкой фундаментальной заряженной частицы, способной существовать в свободном состоянии. (По современным данным время жизни электрона не менее 1019 лет).

При рассмотрении действия тех или иных фундаментальных законов не следует забывать, что каждому виду симметрии соответствует своя асимметрия. Асимметричные условия исключают наличие резкой грани между законами и условиями их действия. Поэтому содержание законов всегда должно включать определенные моменты асимметричных условий.