Смекни!
smekni.com

Естествознание и философия. Диалектический и метафизический методы изучения природы (стр. 7 из 16)

20. Симметрия в природе. Внешние и внутренние симметрии.

Симметрия – однородность, пропорциональность, гармония, инвариантность структуры материального объекта относительно его преобразований. Это признак полноты и совершенства. Лишившись элементов симметрии, предмет утрачивает свое совершенство и красоту.

Четыре категории симметрии:

· симметрия - однородность, пропорциональность, гармония, инвариантность структуры материального объекта относительно его преобразований;

· асимметрия – это несимметрия, т. е. такое состояние, когда симметрия отсутствует;

· дисимметрия – внутренняя, или расстроенная, симметрия, т. е. отсутствие у объекта некоторых элементов симметрии;

· антисимметрия – противоположная симметрия, связанная с переменой знака фигуры.

Операции симметрии:

· отражение в плоскости симметрии;

· поворот вокруг оси симметрии;

· отражение в центре симметрии;

· перенос фигуры на расстояние;

· винтовые повороты.

Виды симметрий.

Среди разных типов симметрии различают пространственно-временные симметрии и внутренние симметрии.

Пространственно-временные симметрии можно разделить на симметрии, связанные с непрерывными и дискретными преобразованиями.

К непрерывным преобразованиям относятся:

- Перенос (сдвиг) системы как целого в пространстве.

- Изменение начала отсчета времени (сдвиг во времени).

- Поворот системы как целого в пространстве. Симметрия физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве.

- Переход к системе отсчета, движущейся относительно данной системы с постоянной скоростью

Среди дискретных пространственно-временных симметрий различают СРТ-симметрию (Т-симметрия поворачивает время вспять, заменяя везде t на -t и, значит, заменяя все скорости на противоположно направленные. Р-симметрия, наиболее геометрическая, делает все, что делает с нашим миром любое зеркало. С-симметрия - любую элементарную частицу заменяет на ее античастицу) и зеркальную симметрию. Симметрия СРТ заключается в том, что для любого движения частиц может осуществляться в природе симметричное ему движение античастиц. Зеркальная симметрия осуществляется в процессах, вызываемых сильными и электромагнитными взаимодействиями, а также в системах, связанных с помощью этих взаимодействий (атомах, атомных ядрах, молекулах, кристаллах).

Симметрия и асимметрия живого.

Мелкие организмы, взвешенные в воде, имеют почти шарообразную форму. У организмов, живущих в морских глубинах и подверженных высокому давлению воды, уже иная симметрия: у них вращательная способность свелась к отдельным поворотам вокруг некоторой оси. Филогенетическая эволюция стремилась вызывать наследственное различие между правым и левым, однако ее действие сдерживалось теми преимуществами, которое животное извлекало из зеркально-симметричного расположения своих органов. Этим, по-видимому, можно объяснить, почему наши конечности более подчиняются симметрии, чем наши внутренние органы. Так, расположение сердца и закручивание кишечника человека почти всегда левостороннее.

Современное естествознание пришло еще к одному важному открытию, связанному с симметрией и касающемуся отличия живого от неживого. Дело в том, что «живые» молекулы, т.е. молекулы органических веществ, составляющих живые организмы и полученные в ходе жизнедеятельности, отличаются от «неживых», т.е. полученных искусственно, отличаются зеркальной симметрией. Неживые молекулы могут быть как зеркально симметричны, так и зеркально асимметричны, как, например, левая и правая перчатка. Это свойства зеркальной асимметрии молекул называется киральностью, или хиральностью (<греч. cheiros – рука). Неживые киральные молекулы встречаются в природе как в «левом» так и в «правом» варианте, т.е. они кирально нечистые. «Живые» молекулы могут быть только одной ориентации – «левой» или «правой», т.е. здесь говорят о киральной чистоте живого. Например, молекула ДНК, как известно, имеет вид спирали, и эта спираль всегда правая. У глюкозы, образующейся в организме – правовращающая форма, у фруктозы – левовращающая. Следовательно, важнейшая способность живых организмов - создавать кирально чистые молекулы. По современным представлениям именно киральность молекул определяет биохимическую границу между живым и неживым.

21. Внешние симметрии и законы сохранения энергии, импульса и момента импульса.

Одной из важнейших особенностей симметрий (С.) является их связь с законами сохранения (ЗС). Понятие С. применимо к любому объекту, в.т.ч. и к физическому закону. Наиболее общий подход к взаимосвязи С. и ЗС содержится в теореме Нетера (1918г.): если св-ва системы не меняются относительно какого-либо преобразования переменных, то этому соответствует некоторый ЗС.

Переход от инерциальной системы отсчета к др. осуществляется через: 1) Сдвиг начала координат – физическая эквивалентностью всех точек пространства, его однородностью. 2) Поворот тройки осей координат - изотропность пространства и соответствует симметрии относительно поворотов. 3) Сдвиг начала отсчета по времени - физическая эквивалентность моментов времени и однородность времени. 4) Равномерное прямолинейное движение начала отсчета со скоростью V - переход от покоящейся системы к системе, движущейся равномерно и прямолинейно.

Такую С. условно называют изотропностью пространства-времени. Переход же осуществляется с помощью преобразований Галилея или преобразований Лоренца.

Эти 4 вида симметрии являются универсальными. Это означает, что все законы Природы относительно них инвариантны с большой степенью точности, а соответствующие им ЗС являются фундаментальными: 1) ЗС импульса как следствие однородности пространства. 2) ЗС момента импульса как следствие изотропности пространства. 3) ЗС энергии как следствие однородности времени. 4) ЗС скорости центра масс (следствие изотропности пространства-времени).

22. Динамические законы и механический детерминизм.

1й Закон Ньютона: Всякая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие сл стороны других тел не заставит изменить это состояние.

2й закон Ньютона: Ускорение, приобретаемое материальной точкой, пропорционально вызвавшей его силе и обратно пропорционально массе материальной точки.

3й закон Ньютона: Всякое действие материальных точек друг на друга носит характер взаимодействия; сила, с которой действуют друг на друга материальные объекты всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

Причинное объяснение многих физических явлений в конце 18-начале 19веков привело к абсолютизации классической механики. Возникло философское учение – механистический детерминизм, выражающий идею абсолютного детерминизма – уверенность в том, что все происходящее имеет причину в человеческом понятии и есть познанная и непознанная разумом необходимость.

Динамический закон - это физический закон, отображаю­щий объективную закономерность в форме связи физических величин, выражаемых количественно. Динамиче­ской теорией является физическая теория, представляющая со­вокупность динамических законов. Исторически первой и наи­более простой теорией такого рода явилась классическая ме­ханика Ньютона. Она описывала механическое движение, то есть перемещения в пространстве с течением времени любых тел или частей тел относительно друг друга.

Законы механики, сформулированные Ньютоном, относятся к физическому телу, размерами которо­го можно пренебречь, материальной точке.

В современной физике под классической механи­кой понимают механику материальной точки или системы ма­териальных точек и механику абсолютно твердого тела.