Ячейки Бенара
Французский физик Бенар изучал теплоперенос в жидкости. Бенар наливал спермацетовое масло в сосуд, подогреваемый снизу. Характер переноса тепла между верхним и нижним слоями жидкости зависит от интенсивности нагрева, который определяет разность температур между ними. При слабом нагреве сама жидкость неподвижна, переносится лишь тепловая энергия за счет теплопроводности. По мере повышения интенсивности нагрева все большую роль начинает играть конвекция (явление переноса теплоты в жидкостях, газах или сыпучих средах потоками самого вещества): нагретая жидкость расширяется, становится более легкой и стремится всплыть вверх. Когда разность температур достигает некоторого критического значения, весь объем жидкости разделяется на одинаковые ячейки, в каждой из которых происходит незатухающее конвекционное движение частиц жидкости по замкнутым траекториям. В условиях опыта Бенара конвекционные ячейки имели форму почти правильных шестиугольников, очень похожую на пчелиные соты. В центре каждой ячейки нагретая жидкость поднималась снизу вверх, а вдоль границ ячеек – опускалась сверху вниз. При достижении критической разности температур ячейки Бенара начинают колебаться с определенной частотой. При этом периодически меняется и температура жидкости в них. Однако периодические колебания системы ячеек Бенара – еще не конец истории. С дальнейшим ростом температуры частота колебаний ячеек растет. При достижении нового порога возникают колебания на новой частоте. Поведение системы остается предсказуемым, однако более сложным, чем для одночастотного колебания. Продолжение роста разности температур приводит к появлению новых частот, пока, наконец их не становится бесконечно много. Но сумма бесконечного числа колебаний с разными частотами дает полностью хаотичное, турбулентное, движение. Описанный сценарий универсален и свойствен столь различным жидкостям, как ртуть и жидкий гелий. Конвективные ячейки обнаружены в фотосфере Солнца (солнечная грануляция) и в мантии Земли
Реакция Белоусова-Жаботинского
Б. П. Белоусов, изучая простую реакцию между броматом калия и лимонной кислотой в присутствии катализатора, обнаружил, что она идет не монотонно, как обычные реакции. Окраска реакционной смеси изменялась от исходной бесцветной до конечной желтой и обратно. Белоусов наблюдал несколько десятков периодов колебаний. Это была первая открытая реакция, которая в однородной смеси сама по себе идет в колебательном режиме.
А. М. Жаботинский показал, что колебательный режим реакции допускается обычными уравнениями химической кинетики, если хотя бы одна из промежуточных стадий реакции является автокаталитической, т. е. если какой-то из ее продуктов ее же ускоряет. Значение открытия Белоусова-Жаботинского заключается в том, что оно продемонстрировало самоорганизацию в простейшей химической системе. Периодичность – один из видов упорядоченности. Спонтанные химические колебания – это упорядоченная структура, неоднородность, только развернутая не в пространстве, а во времени. Позднее было обнаружено, что в системе Белоусова-Жаботинского возможна не только временная, но и пространственная самоорганизация. Отказавшись от традиционного перемешивания раствора, его просто налили тонким слоем в чашку Петри. Оказалось, что реакция не идет синхронно по всей чашке. Изменение окраски сначала происходит в какой-то одной точке – так называемом ведущем центре, от которого затем распространяется во все стороны. Форма линии раздела между областями, окрашенными по-разному, представляет собой фрагмент спирали. Формируется спиральная волна, вращающаяся вокруг ведущего центра со скоростью порядка одного оборота за несколько минут. Тем временем в объеме раствора могут возникнуть еще несколько ведущих центров, вокруг каждого из которых формируется своя спиральная волна. Периоды разных ведущих центров несколько отличаются друг от друга. Благодаря этому наблюдается еще одно замечательное явление – синхронизация. Дело в том, что при столкновении двух спиральных волн они не проходят друг сквозь друга, как обычные волны на поверхности жидкости, а взаимно аннигилируют (уничтожаются), причем аннигиляция в большей степени затрагивает более медленную из них. В результате фронт более быстрой спиральной волны постепенно продвигается в сторону ведущего центра, порождающего медленную волну, уничтожает его и устанавливает единую частоту колебаний во всем объеме. Спиральные волны – распространенная форма самоорганизации в системах различной природы. Они наблюдаются, например, при образовании колоний коллективных микроорганизмов. Сложный характер сокращений сердечной мышцы обусловлен тем, что по ней безостановочно бежит спиральная волна возбуждения.
Система «хищник - жертва»
Это пример колебательного режима по численности хищника и жертвы во времени. Подъем числа зайцев сопровождается выраженным увеличением числа лисиц. Это естественно, так как рост числа зайцев приводит к увеличению количества пищи для лисиц, что увеличивает скорость их размножения. Однако активное поедание зайцев лисами приводит в дальнейшем к падению численности жертвы. В свою очередь, это приводит к последующему снижению численности хищника. С другой стороны, снижение численности хищника приводит к повышению численности жертвы и последующему росту числа хищника. Такова природа колебаний численности хищника и жертвы, которые наблюдаются в экосистеме. Эта модель объясняет широко распространенные в различных экосистемах «волны жизни», т. е. периодические колебания численности различных видов животных.
Однако расчеты показывают, что в системе «хищник - жертва» возможен и другой режим, при котором наблюдается очень быстрое уменьшение численности и полное вымирание жертвы и следующее за ним вымирание хищника.
Морфогенез
Биологическая структура, как раз является той самой открытой нелинейной системой, которая препятствует своему разрушению за счет способности к самоорганизации. Но расплатой за устойчивость и прочие преимущества живой материи, является зависимость от поступления энергии извне, как необходимого условия существования неравновесной биосистемы. Фактически, жизнь есть не что иное, как система по понижению собственной энтропии за счет повышения энтропии окружающей среды. Морфогенез – формообразование при высоких затратах энергии в диссипативных структурах с самоорганизацией за счет рассеяния энергии в тепло; рост организма или его частей, сопряженный с закладкой и развитием пространственной структуры, направляемый и взаимоопределяемый различными факторами. Отдельные клетки бывают недифференцированными, специализация развивается в соответствующем окружении других клеток и под их воздействием. В морфогенезе есть критические фазы, сопряженные с существенной перестройкой генома (точки бифуркации), когда можно вмешаться в развитие и либо нарушить его, либо переключить на другой канал, при этом возникают наследуемые и воспроизводимые в опыте изменения. Иногда активный морфогенез захватывает отдельный орган или структуру, неожиданного и отличающегося типа самоорганизации от всего организма – рога плотнорогих, плодовые тела грибов, цветы растений, брачный наряд рыб и т.д.
Как выясняется, переход от Хаоса к Порядку вполне поддается математическому моделированию. И более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых различных сферах действительности (в природе и обществе – его истории, экономике, демографических процессах, духовной культуре и др.) подчиняются подчас одному и тому же математическому сценарию. Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных процессов в химии до эволюции звезд и космологических процессов, от электронных приборов до формирования общественного мнения и демографических процессов. Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы – это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации – от низших и простейших к высшим и сложнейшим (человек, общество, культура).
Вопрос № 3: Исторические этапы развития жизни на Земле
Происхождение жизни - одна из трех важнейших мировоззренческих проблем наряду с проблемой происхождения нашей Вселенной и проблемой происхождения человека. В античности сложились два противоположных подхода к решению этой проблемы. Первый, религиозно-идеалистический, исходил из того, что жизнь является следствием божественного творческого акта. В основе второго, материалистического подхода лежало представление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. Появление жизни на Земле пытались объяснить и занесением ее из других космических миров. Гипотеза космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Гипотеза панспермии: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве под давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого. Сейчас уже определенно выяснено, что «азбука» живого сравнительно проста: в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Существование небольшого числа одних и тех же молекул во всех живых организмах убеждает нас, что все живое должно иметь единое происхождение.