Рис. 4. Пример схемы связи с использованием хаоса. Передатчик и приемник включают в себя такие же нелинейные и линейные системы, как источник. Дополнительно в передатчик включен сумматор, а в приемник - вычитатель. В сумматоре производится сложение хаотического сигнала источника и информационного сигнала, а вычитатель приемника предназначен для выделения информационного сигнала. Сигнал в канале хаосоподобный и не содержит видимых признаков передаваемой информации, что позволяет передавать конфиденциальную информацию. Сигналы в точках А иА', Б и Б' попарно равны. Поэтому при наличии входного информационного сигнала Sна входе сумматора передатчика такой же сигнал будет выделяться на выходе вычитателя приемника.
Сфера применения хаотических сигналов не ограничивается системами с расширением спектра. Они могут быть использованы для маскировки передаваемой информации и без расширения спектра, то есть при совпадении полосы частот информационного и передаваемого сигналов.
Все это стимулировало активные исследования хаотических коммуникационных систем. К настоящему времени на основе хаоса предложено несколько подходов для расширения спектра информационных сигналов, построения самосинхронизующихся приемников и развития простых архитектур передатчиков и приемников. Идея большинства предложенных решений базируется на синхронизации "ведомой системой" (приемником) исходного невозмущенного хаотического сигнала, генерируемого "ведущей системой" (передатчиком). С помощью таких схем связи может передаваться как аналоговая, так и цифровая информация с различными скоростями информационных потоков и разной степенью конфиденциальности. Еще одним потенциальным достоинством схем связи с использованием хаоса является возможность реализации новых методов разделения каналов, что особенно важно в многопользовательских коммуникационных системах.
Если до недавнего времени проблема конфиденциальности передачи информации и более широкая проблема защиты информации относились в основном к военным и специальным применениям, то теперь все важнее становится рынок гражданских приложений. Примерами могут служить защита коммерческой информации в компьютерах и компьютерных сетях, безопасность электронных платежей, защита от пиратского копирования CD-ROM, музыкальных и видеодисков, защита от копирования музыкальной, видео- и другой информации, распространяемой по компьютерным сетям, Интернет-телефония и пр.
К защите коммерческой информации предъявляются требования, существенно отличающиеся от "классических". В частности, типичным требованием становится возможность массового применения и низкая себестоимость на единицу "информационной" продукции. Кроме того, могут меняться и подходы к защите. Так, для защиты музыкальной и видеоинформации на компакт-дисках от пиратского копирования нет необходимости в том, чтобы записанная информация была полностью недоступна для "злоумышленника": вполне достаточно просто снизить качество воспроизведения до неприемлемого для потребителя уровня.
При решении таких "бытовых" проблем защиты информации в перспективе могут успешно применяться средства, основанные на детерминированном хаосе.
Безусловно, конкретные примеры применения хаоса в информационных и коммуникационных технологиях, приведенные в статье, отражают в первую очередь научные интересы и взгляды автора и коллектива, в котором он работает. Вместе с тем они дают представление о том, как с помощью хаоса можно решать созидательные задачи.
6. Хаоса в других науках
Теория хаоса находит приложения в широком спектре наук. Одним из самых ранних стало ее применение к анализу турбулентности в жидкости. Движение жидкости бывает либо ламинарным (гладким и регулярным), либо турбулентным (сложным и нерегулярным). До появления теории хаоса существовали две конкурирующие теории турбулентности. Первая из них представляла турбулентность как накопление все новых и новых периодических движений; вторая объясняла неприменимость стандартной физической модели невозможностью описания жидкости как сплошной среды в молекулярных масштабах. В 1970 математики Д.Рюэль и Ф.Такенс предложили третью версию: турбулентность – это хаос в жидкости. Их предположение поначалу считалось весьма спорным, но с тех пор оно было подтверждено для нескольких случаев, в частности, для ранних стадий развития турбулентности в течении между двумя вращающимися цилиндрами. Развитая турбулентность по-прежнему остается загадочным явлением, но хаоса вряд ли удается избежать в любом возможном ее объяснении. (гидроаэромеханика)
Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки).
Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.
Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.
Британские физики создали систему, которая приводит хаос в порядок
Британские физики из Уорикского университета разработали метод, который позволяет предсказывать возникновение порядка из хаоса в сложных системах, состоящих из множества случайно изменяющихся элементов.
Ученые под руководством Роберта Уикса во время своего исследования пытались понять, как сложные системы вроде плазмы, толпы людей или стаи птиц неожиданно переходят от хаоса к порядку без внешнего вмешательства.
Специалисты предположили, что закономерности самоорганизации могут быть одинаковыми для разных сложных систем. Поэтому, взяв за основу известные данные о поведении больших групп животных и насекомых, они разработали новый математический способ анализа, названный методом взаимной информации.
Этот новый метод позволяет определять закономерности и корреляции на основании очень небольшого количества данных. Для проверки своего метода исследователи использовали несложную модель, разработанную в 90-е годы известным венгерским биофизиком Тамашем Вичеком для описания поведения колоний бактерий, стай скворцов или саранчи.
В результате оказалось, что новый метод взаимной информации в четыре раза точнее при поиске упорядоченного состояния, чем традиционные статистические методы.
Ученые предполагают, что новый метод будет полезен и при изучении фондовой биржи. Вероятно, с его помощью удастся объяснить возникающие порой неожиданные корреляции, когда акции компаний, не имеющих никаких видимых связей, испытывают одинаковые колебания цен.
Математики рассчитали оптимальную стратегию борьбы с эпидемией
Американские и израильские математики рассчитали оптимальную стратегию борьбы с эпидемией при помощи вакцинации.