Смекни!
smekni.com

Теория хаоса (стр. 7 из 7)

Традиционно считается, что лучший способ борьбы с заболеванием - вакцинация как можно большего числа людей. В рамках нового исследования ученые установили, что это не так. Если эпидемию рассматривать как динамический процесс, то время вакцинации оказывается не менее важным, чем количество привитых индивидуумов.

Используя вероятностную модель для описания процессов заражения, повторного заражения и распространения заболевания, ученые смогли установить, что при фиксированном количестве доступной вакцины лучшая стратегия - проведение серии интенсивных мероприятий по прививанию. Оказалось, что подобная серия работает эффективнее отдельно взятой массивной вакцинации.

По словам ученых, эффективность стратегии обусловлена тем, что в течение длительного времени количество зараженных в коллективе может оставаться достаточно стабильным. Последовательная вакцинация позволяет уменьшить стабильное количество больных и приводит к экспоненциальному уменьшению количества болеющих.

Ученые подчеркивают, что их модель не привязана к какому-либо конкретному заболеванию и может применяться в самом общем случае. Главной трудностью при этом остается вычисление периодов, с которыми необходимо проводить вакцинацию.

Муравьиные алгоритмы в действии

В компании Pacific Northwest National Laboratory нашли новый подход к анализу безопасности компьютерных сетей. Для борьбы с вредоносным ПО предложено использовать "муравьиные алгоритмы".

При помощи программы, алгоритмы которой копируют механизмы поведения муравьев, в лаборатории пытаются найти «сетевые аномалии».

«Сами по себе муравьи не умны, — утверждает Гленн Финк, возглавляющий необычные исследования, — однако их колония может продемонстрировать удивительно разумное поведение».

По словам ученых, их программа использует распределенные по компьютерным сетям сенсоры, непрерывно собирающие данные. Словно муравьи, передающие своим сородичам информацию о еде или опасности при помощи запахов, эти сенсоры делятся собранной информацией друг с другом. Таким образом, программа может определить своеобразные сетевые аномалии, сигнализирующие о возможной опасности, например о масштабном заражении сети.

Сенсоры бывают различной направленности – по словам Финка, одни могут собирать данные о чрезмерной загрузке центрального процессора компьютеров, а другие – проверять сетевой трафик. Также есть «часовые» — специальные блоки программы, анализирующие информацию, полученную от всех сенсоров-муравьев.

Хотя инновационный антивирусный комплекс находится на ранней стадии разработки, уже сейчас он способен обнаруживать некоторых компьютерных червей. Однако, по словам создателей, искусственному интеллекту их программы еще есть чему научиться.


7.

Вывод

Первое и самое важное — теория хаоса — это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые — вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени — представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные — т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики. Сегодня поиски исследователей – главным образом математиков – направлены на то, чтобы выявить все типы нелинейных уравнений, решение которых приводит к детерминированному хаосу. Активный интерес к нему вызван тем, что одни и те же его закономерности могут проявляться в самых разных природных явлениях и технических процессах: при турбулентности в потоках, неустойчивости электронных и электрических сетей, при взаимодействии видов в живой природе, при химических реакциях и даже, по-видимому, в человеческом обществе. Отсюда следует фундаментальная значимость хаоса – его изучение может привести к созданию мощного математического аппарата, обладающего большой общностью и обширными возможностями для приложений. Теория хаоса идет своим, особым путем от самых основ. Возможно, это новый, независимый путь к пониманию универсальности мира!

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.


Список литературы

1. Пайтген Х. О., Рихтер П. Х. «Красота фракталов».

2. В. И. Кувшинов, А. В. Кузьмин «Калибровочные поля и теория детерминированного хаоса»

3. Шустер Г. «Детерминированный хаос: введение».

4. Рюэль Д. «Случайность и хаос». – Ижевск: НИЦ, 2001, 192стр.

5. Кроновер Р.М. «Фракталы и хаос в динамических системах. Основы теории».

6. Магницкий Н. А., Сидоров С. В. «Новые методы хаотической динамики». — М.: Едиториал УРСС, 2004, 320 с.