Смекни!
smekni.com

Этапы развития логики как науки и основные направления современной символической логики (стр. 15 из 16)

В системах Льюиса были устранены парадоксы материаль­ной импликации, т.е. формулы (1) и (2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы:

(~ () ~p)

(q
p) (3)

(~ () p)

(p
q) (4)

Итак, отождествлять строгую импликацию Льюиса со следова­нием нельзя.

С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896 -1962) по­строил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой имплика­ции Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические терми­ны и модальные операторы определяет через сильную импликацию так: NA равносильно

→?, МА равносильно
. Здесь А - любая правильно построенная формула системы Аккермана; N- оператор необходимости; М- оператор возможности;
-от­рицание A; → обозначает сильную импликацию;
-логическая постоянная, обозначающая “абсурдно”. Эта постоянная в свою очередь определяется так: А&
,
где & обозначает конъюнк­цию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся фор­мулы, структурно подобные парадоксам материальной или строгой импликации.

Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные сис­темы Лукасевича являются конечнозначными: одна - трехзначная (1920), другая - четырехзначная (1953). В четырехзначной системе Лукасевича1 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида L

(где L обозначает не­обходимость, а
- любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модальный оператор “необходимо” упраздняется. Лукасевич пишет: “Лю­бое аподиктическое предложение должно быть отброшено”2. Сам Лукасевич считал это достоинством своей системы, а понятие “необходимость” - псевдопонятием. С такой точкой зрения, ко­нечно, согласиться нельзя.

Интерпретации модальных логик различны. Известный авст­рийский философ и логик Р. Карнап (1891-1970) пытался ин­терпретировать модальные понятия (операторы) с помощью так называемой теории “возможных миров”, в которой допускается наличие множества “миров”, один из которых -действительный, реальный мир, а остальные - возможные миры. Необходимым объ­является то, что существует во всех мирах, возможным - то, что существует хотя бы в одном.

Р. Карнап в 1946 г., используя понятие “описание состояния”, предложил интерпретацию модальных операторов, в основе кото­рой лежала идея различия возможного и действительного мира.

В ином направлении шел финский логик Я. Хинтикка. Крити­чески переосмыслив введенное Карнапом понятие “описание состояния”, он разработал технику “модальных множеств”, т. е. миров (1957), - оригинальную семантическую концепцию возмо­жных миров. Разработка семантики возможных миров для мо­дальных логик продолжается.

Разнообразными проблемами модальной логики занимается американский логик Р. Фейс'.

В настоящее время разработаны многие виды модальностей, ко­торые отражены в таблице, помещенной на с. 97 данного учебника.

Теорией модальных логик и построением новых модальных логических систем активно занимаются логики А. А. Ивин, Я. А. Слинин, Б. С. Чендов,0. Ф. Серебряников, В. Т. Павлов и др.

§ 8. Положительные логики

Положительные логики (сокращенно - ПЛ) - это логики, по­строенные без операции отрицания. Их можно разделить на два вида:

1) ПЛ в широком смысле слова, или квазипозитивные логи­ки. Они построены без операции отрицания, но отрицание мо­жет быть выражено средствами их логических систем;

2) ПЛ в узком смысле слова. Они построены без операции от­рицания, и отрицание не может быть выражено в их системах.

Можно предложить классификацию ПЛ и по другому основа­нию: числу логических операций, на котором построена ПЛ.

Квазипозитивными логиками, построенными на одной опе­рации, являются логика, построенная на операции “штрих Шеффера” (антиконъюнкция), и логика, основанная на операции ан­тидизъюнкции. Квазипозитивная логика, построенная на опе­рации антидизъюнкции, которая соответствует сложному союзу “ни..., ни...” и обозначается а

b (“ни а, ни b), таблично опре­делена так:

а b a
b
И И Л
И Л Л
Л И Л
Л Л И

Ряд квазипозитивных логик основан на двух операциях. ПЛ в узком смысле, основанными на одной операции, являются импликативная логика, основанная на операции импликации, и логика, построенная на операции эквиваленции. Ряд ПЛ осно­ван на двух операциях:

а) на импликации и конъюнкции;

б) на дизъюнкции и конъюнкции;

в) на импликации и дизъюнкции.

ПЛ (в узком смысле) является подсистемой (частичной си­стемой) более сильных логик - интуиционистской и классиче­ской. Все утверждения ПЛ имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих ПЛ также имеются различные по силе системы. Так, импликативная логи­ка, включающая две аксиомы, слабее, чем ПЛ, включающая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это со­отношение: самой сильной является классическая логика, слабее интуиционистская, еще слабее ПЛ.

Общим для ПЛ в широком и узком смыслах является то, что среди логических констант этих систем нет операции отрицания.

Отличия этих систем следующие:

1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в ПЛ в узком смысле операция отрица­ния не выразима;

2) квазипозитивные логики являются моделями классической логики, т.е. они эквивалентны классической логике высказыва­ний, а ПЛ в узком смысле не эквиваленты классической логике, являясь ее подсистемами (частичными системами), следователь­но, они слабее классической логики высказываний.

Роль ПЛ в искусственных языках весьма значительна. Особен­но это касается конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я1, нет отрица­ния, и в нем нельзя выразить отрицание, ибо нет импликации. Марковым был построен язык Я1, который хотя и узок, но приспо­соблен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории алгоритмов. С помощью языка Я1, (языка без отрицания) можно дать описа­ние работы различных алгоритмов - и в этом состоит важное значение языка без операции отрицания.

Логическая система без операции логического отрицания нахо­дит свое применение при построении машинных программ. Но если взять искусственные языки - такие, как ФОРТРАН или КОБОЛ, которые позволяют воспользоваться высокоэффективным спосо­бом программирования, то в их состав, кроме логического сложе­ния и логического умножения, входит и логическое отрицание, со­ответствующее частице “не” и обозначаемое знаком “ u ”. Все инструкции о том, как произвести сборку замков, мебели, по ис­пользованию машин, инструментов, технических приборов и т. п. основаны на содержательном (не формализованном) использова­нии ПЛ.

§ 9. Паранепротиворечивая логика

Эта логика представляет одно из направлений современной неклассической математической логики. Объективной основой появления паранепротиворечивых логик является стремление отразить средствами логики специфику мышления человека о переходных состояниях, которые наряду с устойчивостью и от­носительным покоем наблюдаются в природе, обществе и поз­нании. В природе и обществе происходят изменения, предме­ты и их свойства переходят в свою противоположность, поэтому нередки переходные состояния, промежуточные ситуации, не­определенность в познании, переход от незнания или неполно­го знания к более полному и точному. Действие законов дву­значной логики - закона исключенного третьего и закона непротиворечия - в этих ситуациях ограничено или вообще исключено. На необщезначимость этих законов указывал еще Ари­стотель. Говоря о будущих единичных случайных событиях, по Аристотелю, нельзя считать суждение истинным или ложным, оно неопределенно.