В системах Льюиса были устранены парадоксы материальной импликации, т.е. формулы (1) и (2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы:
(~ () ~p) (q p) (3)
(~ () p) (p q) (4)
Итак, отождествлять строгую импликацию Льюиса со следованием нельзя.
С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896 -1962) построил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой импликации Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические термины и модальные операторы определяет через сильную импликацию так: NA равносильно
→?, МА равносильно . Здесь А - любая правильно построенная формула системы Аккермана; N- оператор необходимости; М- оператор возможности; -отрицание A; → обозначает сильную импликацию; -логическая постоянная, обозначающая “абсурдно”. Эта постоянная в свою очередь определяется так: А& , где & обозначает конъюнкцию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся формулы, структурно подобные парадоксам материальной или строгой импликации.Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные системы Лукасевича являются конечнозначными: одна - трехзначная (1920), другая - четырехзначная (1953). В четырехзначной системе Лукасевича1 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида L
(где L обозначает необходимость, а - любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модальный оператор “необходимо” упраздняется. Лукасевич пишет: “Любое аподиктическое предложение должно быть отброшено”2. Сам Лукасевич считал это достоинством своей системы, а понятие “необходимость” - псевдопонятием. С такой точкой зрения, конечно, согласиться нельзя.Интерпретации модальных логик различны. Известный австрийский философ и логик Р. Карнап (1891-1970) пытался интерпретировать модальные понятия (операторы) с помощью так называемой теории “возможных миров”, в которой допускается наличие множества “миров”, один из которых -действительный, реальный мир, а остальные - возможные миры. Необходимым объявляется то, что существует во всех мирах, возможным - то, что существует хотя бы в одном.
Р. Карнап в 1946 г., используя понятие “описание состояния”, предложил интерпретацию модальных операторов, в основе которой лежала идея различия возможного и действительного мира.
В ином направлении шел финский логик Я. Хинтикка. Критически переосмыслив введенное Карнапом понятие “описание состояния”, он разработал технику “модальных множеств”, т. е. миров (1957), - оригинальную семантическую концепцию возможных миров. Разработка семантики возможных миров для модальных логик продолжается.
Разнообразными проблемами модальной логики занимается американский логик Р. Фейс'.
В настоящее время разработаны многие виды модальностей, которые отражены в таблице, помещенной на с. 97 данного учебника.
Теорией модальных логик и построением новых модальных логических систем активно занимаются логики А. А. Ивин, Я. А. Слинин, Б. С. Чендов,0. Ф. Серебряников, В. Т. Павлов и др.
§ 8. Положительные логики
Положительные логики (сокращенно - ПЛ) - это логики, построенные без операции отрицания. Их можно разделить на два вида:
1) ПЛ в широком смысле слова, или квазипозитивные логики. Они построены без операции отрицания, но отрицание может быть выражено средствами их логических систем;
2) ПЛ в узком смысле слова. Они построены без операции отрицания, и отрицание не может быть выражено в их системах.
Можно предложить классификацию ПЛ и по другому основанию: числу логических операций, на котором построена ПЛ.
Квазипозитивными логиками, построенными на одной операции, являются логика, построенная на операции “штрих Шеффера” (антиконъюнкция), и логика, основанная на операции антидизъюнкции. Квазипозитивная логика, построенная на операции антидизъюнкции, которая соответствует сложному союзу “ни..., ни...” и обозначается а b (“ни а, ни b), таблично определена так:
а | b | a b |
И | И | Л |
И | Л | Л |
Л | И | Л |
Л | Л | И |
Ряд квазипозитивных логик основан на двух операциях. ПЛ в узком смысле, основанными на одной операции, являются импликативная логика, основанная на операции импликации, и логика, построенная на операции эквиваленции. Ряд ПЛ основан на двух операциях:
а) на импликации и конъюнкции;
б) на дизъюнкции и конъюнкции;
в) на импликации и дизъюнкции.
ПЛ (в узком смысле) является подсистемой (частичной системой) более сильных логик - интуиционистской и классической. Все утверждения ПЛ имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих ПЛ также имеются различные по силе системы. Так, импликативная логика, включающая две аксиомы, слабее, чем ПЛ, включающая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это соотношение: самой сильной является классическая логика, слабее интуиционистская, еще слабее ПЛ.
Общим для ПЛ в широком и узком смыслах является то, что среди логических констант этих систем нет операции отрицания.
Отличия этих систем следующие:
1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в ПЛ в узком смысле операция отрицания не выразима;
2) квазипозитивные логики являются моделями классической логики, т.е. они эквивалентны классической логике высказываний, а ПЛ в узком смысле не эквиваленты классической логике, являясь ее подсистемами (частичными системами), следовательно, они слабее классической логики высказываний.
Роль ПЛ в искусственных языках весьма значительна. Особенно это касается конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я1, нет отрицания, и в нем нельзя выразить отрицание, ибо нет импликации. Марковым был построен язык Я1, который хотя и узок, но приспособлен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории алгоритмов. С помощью языка Я1, (языка без отрицания) можно дать описание работы различных алгоритмов - и в этом состоит важное значение языка без операции отрицания.
Логическая система без операции логического отрицания находит свое применение при построении машинных программ. Но если взять искусственные языки - такие, как ФОРТРАН или КОБОЛ, которые позволяют воспользоваться высокоэффективным способом программирования, то в их состав, кроме логического сложения и логического умножения, входит и логическое отрицание, соответствующее частице “не” и обозначаемое знаком “ u ”. Все инструкции о том, как произвести сборку замков, мебели, по использованию машин, инструментов, технических приборов и т. п. основаны на содержательном (не формализованном) использовании ПЛ.
§ 9. Паранепротиворечивая логика
Эта логика представляет одно из направлений современной неклассической математической логики. Объективной основой появления паранепротиворечивых логик является стремление отразить средствами логики специфику мышления человека о переходных состояниях, которые наряду с устойчивостью и относительным покоем наблюдаются в природе, обществе и познании. В природе и обществе происходят изменения, предметы и их свойства переходят в свою противоположность, поэтому нередки переходные состояния, промежуточные ситуации, неопределенность в познании, переход от незнания или неполного знания к более полному и точному. Действие законов двузначной логики - закона исключенного третьего и закона непротиворечия - в этих ситуациях ограничено или вообще исключено. На необщезначимость этих законов указывал еще Аристотель. Говоря о будущих единичных случайных событиях, по Аристотелю, нельзя считать суждение истинным или ложным, оно неопределенно.