Смекни!
smekni.com

Этапы развития логики как науки и основные направления современной символической логики (стр. 8 из 16)

Причину своей неудачи Фреге видел в использованном им предположении, что у всякого понятия есть объем в смысле по­стоянного, строго фиксированного множества, не содержащего в себе никакой неопределенности или расплывчатости. Ведь именно через этот объем он и определил основное понятие мате­матики - понятие числа.

Вслед за Г. Фреге очередную попытку сведения математики к логике предпринял видный английский философ и логик Бер­тран Рассел (1872-1970). Он также автор ряда работ из областей истории, литературы, педагогики, эстетики, естествознания, со­циологии и др. Труды Рассела по математической логике оказа­ли большое влияние на ее развитие. Вместе с английским логи­ком и математиком А. Уайтхедом2 Рассел разработал оригиналь­ную систему символической логики в фундаментальном трех­томном труде “Principia Mathematica”3. Выдвигая идею сведения математики к логике, Рассел считает, что если гипотеза относит­ся не к одной или нескольким частным вещам, но к любому пред­мету, то такие выводы составляют математику. Таким образом, он определяет математику как доктрину, в которой мы никогда не знаем ни того, о чем мы говорим, ни того, верно ли то, что мы говорим.

Рассел делит математику на чистую и прикладную. Чистая математика, по его мнению, есть совокупность формальных выводов, независимых от какого бы то ни было содержания, т. е. это класс высказываний, которые выражены исключительно в терминах переменных и только логических констант. Рассел не только вполне уверен в том, что ему удалось свести математику к такого рода предложениям, но делает из этого утверждения вывод о существовании априорного знания, считает, что “мате­матическое познание нуждается в посылках, которые не базиро­вались бы на данных чувства”'.

От чистой математики Рассел отличает прикладную математи­ку, которая состоит в применении формальных выводов к матери­альным данным.

Для того чтобы показать, что чистая математика сводится к логике, Рассел берет систему аксиом арифметики, сформулиро­ванную Пеано, и пытается их логически доказать, а три неопре­деляемые у Пеано понятия: “нуль”, “число”, “следующее за” - определить в терминах своей логической системы. Все натураль­ные числа Рассел также считает возможным выразить в терми­нах логики, а следовательно, свести арифметику к логике. А так как, по его мнению, вся чистая математика может быть сведена к арифметике, то математика может быть сведена к логике. Рас­сел пишет: “Логика стала математической, математика логичес­кой. Вследствие этого сегодня совершенно невозможно провес­ти границу между ними. В сущности это одно и то же. Они различаются, как мальчик и мужчина; логика - это юность мате­матики, а математика - это зрелость логики”2. Рассел считает, что не существует пункта, где можно было бы провести резкую границу, по одну сторону которой находилась бы логика, а по другую - математика.

Но в действительности математика несводима к логике. Предметы изучения этих наук различны. Нами ранее были ука­заны характерные черты, присущие логике как науке (см. с.141-142). У математики другие задачи и функции.

В большом труде “Principia Mathematica” есть две стороны. Первая - заставляющая видеть в нем один из основных истоков современной математической логики. Все, что связано с этой сто­роной Principia Mathematica, получило в дальнейшем такое раз­витие в математической логике, которое сделало эту новую об­ласть науки особенно важной для решения не только труднейших задач теоретической математики и ее обоснования, но и целого ряда весьма важных для практики задач вычислительной матема­тики и техники.

Другая сторона этого произведения - точнее, даже не самого этого произведения, а философских “обобщений”, делаемых логицистами со ссылкой на него, - принадлежит уже к области по­пыток использовать его для “доказательства” положения, что математика-де сводится к логике. Именно эта сторона сомнительна, и ее опровергает дальнейшее развитие науки, которое обнаружи­ло, что попытка Рассела безуспешна. И это не случайно. Дело не в том, что Рассел в каком-то смысле не совсем удачно построил свою систему. Дело в том, что вообще нельзя построить формаль­ную “логическую систему” с точно перечисленными и эффективно выполнимыми правилами вывода, в которой можно было бы фор­мализовать всю содержательную арифметику. Это обстоятельство представляет собой содержание известной теоремы австрийского математика и логика К. Гёделя о неполноте формализованной арифметики', из которой следует непосредственно, что определе­ние математических понятий в терминах логики хотя и обнару­живает некоторые их связи с логикой, тем не менее не лишает их специфически математического содержания. Формализованная система имеет смысл лишь при наличии содержательной науч­ной теории, систематизацией которой данная формализованная система должна служить.

Однако Г. Фреге и Б. Рассел в своем логическом анализе при­шли к ряду интересных результатов, относящихся к понятиям “предмет”, “имя”, “значение”, “смысл”, “функция”, “отношение” и др. Особо следует подчеркнуть значение разработанной Рассе­лом теории типов (простой и разветвленной), цель которой состо­ит в том, чтобы помочь разрешить парадоксы в теории множеств. Рациональное зерно разветвленной теории Рассела состоит в том, что она является конструктивной теорией.

Одним из оснований деления логики служит различие приме­няемых в ней принципов, на которых базируются исследования. В результате такого деления имеем классическую логику и неклассические логики. В. С. Меськов выделяет такие осново­полагающие принципы классической логики:

“1) область исследования составляют обыденные рассужде­ния, рассуждения в классических науках;

2) допущение о разрешимости любой проблемы;

3) отвлечение от содержания высказываний и от связей по смыслу между ними;

4) абстракция двузначности высказываний”'. , Неклассические логики отступают от этих принципов. К ним относятся интуиционистская логика, конструктивные логики, многозначные, модальные, положительные, паранепротиворечивые и другие логики, к изложению которых мы переходим.

§ 3. Интуиционистская логика

Интуиционистская логика построена в связи с развитием ин­туиционистской математики. Интуиционистская школа основа­на в 1907 г. голландским математиком и логиком Л. Брауэром (1881-1966)2, но некоторые ее идеи выдвигались и ранее.

Интуиционизм - философское направление в математике и логике, отказывающееся от использования абстракции актуаль­ной бесконечности, отвергающее логику как науку, предшест­вующую математике, и рассматривающее интуитивную ясность и убедительность (“интуицию”) как последнюю основу матема­тики и логики. Интуиционисты свою интуиционистскую мате­матику строят с помощью финитных (конечных) средств на ос­нове системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны - фи­лософскую и математическую.

Математическое содержание интуиционизма изложено в ряде работ математиков. Ведущие представители отечественной шко­лы конструктивной математики отмечают положительное зна­чение некоторых математических идей интуиционистов.

В целом конструктивная математика существенно отличает­ся от интуиционистской, но, как указывал советский математик-конструктивист А. А. Марков, конструктивное направление име­ет точки соприкосновения с интуиционистской математикой. Конструктивисты сходятся с интуиционистами в понимании дизъюнкции и в силу этого признают правильной данную Брауэром критику закона исключенного третьего. Вместе с тем кон­структивисты считают неприемлемыми методологические ос­новы интуиционизма.

Если математический аспект интуиционизма имеет рациональ­ный смысл (в этой связи предпочтительнее говорить об интуицио­нистской математике или интуиционистской логике, а не об ин­туиционизме), то второй его аспект - философско-методологический - совершенно неприемлем.

Брауэр считал, что чистая математика представляет собой сво­бодное творение разума и не имеет никакого отношения к опыт­ным фактам. У интуиционистов единственным источником ма­тематики оказывается интуиция, а критерием приемлемости математических понятий и выводов является “интуитивная яс­ность”. Но интуиционист Гейтинг вынужден был признаться в том, что понятие интуитивной ясности в математике само не является интуитивно ясным; можно даже построить нисходящую шкалу степеней очевидности.

Основой происхождения математики в конечном итоге явля­ется не какая-то “интуитивная ясность”, а отражение в созна­нии пространственных форм и количественных отношений действительного мира. Гейтинг, как и Брауэр, в гносеологии субъ­ективный идеалист. Он считает, что математическая мысль не выражает истину о внешнем мире, а связана исключительно с умственными построениями'.

Еще в 1936 г. советский математик А.Н. Коломогоров подверг критике субъективно-идеалистические основы интуиционизма, заявив, что невозможно согласиться с интуиционистами, когда они говорят, что математические объекты являются продуктом конструктивной деятельности нашего духа, ибо математичес­кие объекты являются абстракциями реально существующих форм независимой от нашего духа действительности. Интуиционисты не признают практику и опыт источником формиро­вания математических понятий, методов математических по­строений и методов доказательств.

Особенности интуиционистской логики вытекают из характер­ных признаков интуиционистской математики.

В современной классической математике часто прибегают к косвенным доказательствам. Но их почти невозможно ввести в интуиционистскую математику и логику, так как там не призна­ются закон исключенного третьего и закон

и которые участвуют в косвенных доказательствах. Но закон непротиворе­чия представители как интуиционистской, так и конструктив­ной логики считают неограниченно применимым.