Смекни!
smekni.com

Методика решения иррациональных уравнений и неравенств в школьном курсе математики (стр. 5 из 21)

2) если функция

определена и отлична от нуля в ОДЗ уравнения (4), то уравнения (4) и (5) равносильны. [18]

Заметим, что в общем случае переход от уравнения (5) к уравнению (4) недопустим, так как это может привести к потере корней.

При решении уравнений вида (5) обычно заменяют его равносильным уравнением

,

затем находят все корни уравнений

и

и, наконец, проверяют, какие из этих корней удовлетворяют уравнению (5).

4. Возведение обеих частей уравнения в натуральную степень, то есть переход от уравнения

(6)

к уравнению

. (7)

Справедливы следующие утверждения:

1) при любом

уравнение (7) является следствием уравнения (6);

2) если

(n – нечетное число), то уравнения (6) и (7) равносильны;

3) если

(n – четное число), то уравнение (7) равносильно уравнению

, (8)

а уравнение (8) равносильно совокупности уравнений

. (9)

В частности, уравнение

(10)

равносильно совокупности уравнений (9). [18]

Следовательно, исходя из утверждений 1 и 2, возведение обеих частей уравнения в нечетную степень и извлечение из обеих частей уравнения корня нечетной степени является равносильным преобразованием.

Исходя из утверждения 1 и 3, возведение обеих частей уравнения в четную степень и извлечение из обеих частей уравнения корня четной степени является неравносильным преобразованием, при этом получается уравнение, являющееся следствием исходного.

5. Применение формулы

при

является равносильным преобразованием, при
– неравносильным. [15], [18]

Преобразования уравнений, рассмотренные в пунктах 3, 4 и 5 будут продемонстрированы на примерах ниже.

2.2. Методы решения иррациональных уравнений

В работе будем придерживаться следующего определения иррационального уравнения:

Иррациональным уравнением называется уравнение, содержащее неизвестное под знаком корня.

Прежде чем приступить к решению сложных уравнений учащиеся должны научиться решать простейшие иррациональные уравнения. К простейшим иррациональным уравнениям относятся уравнения вида:

.

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием.

Главный способ избавиться от корня и получить рациональное уравнение – возведение обеих частей уравнения в одну и ту же степень, которую имеет корень, содержащий неизвестное, и последующее «освобождение» от радикалов по формуле

. [6]

Если обе части иррационального уравнения возвести в одну и ту же нечетную степень и освободиться от радикалов, то получится уравнение, равносильное исходному. [6]

При возведении уравнения в четную степень получается уравнение, являющееся следствием исходного. Поэтому возможно появление посторонних решений уравнения, но не возможна потеря корней. Причина приобретения корней состоит в том, что при возведении в четную степень чисел, равных по абсолютной величине, но разных по знаку, получается один и тот же результат.

Так как могут появиться посторонние корни, то необходимо делать проверку, подставляя найденные значения неизвестной только в первоначальное уравнение, а не в какие-то промежуточные.

Рассмотрим применение данного метода для решения иррациональных уравнений вида

. [7]

Пример 1. Решить уравнение

.

Решение. Возведем обе части этого уравнения в квадрат

и получим
, откуда следует, что
или
.

Проверка.

:
. Это неверное числовое равенство, значит, число
не является корнем данного уравнения.

:
. Это верное числовое равенство, значит, число
является корнем данного уравнения.

Ответ.

.

Пример 2. Решить уравнение

.

Решение. После возведения в квадрат получаем уравнение

, откуда следует что
или
.

Проверка.

:
. Это верное числовое равенство, значит, число
является корнем данного уравнения.

:
. Это неверное числовое равенство, значит, число
не является корнем данного уравнения.

Ответ.

.

2.2.1. Метод сведения к эквивалентной системе уравнений и неравенств

Проверка, осуществляемая подстановкой найденного решения в исходное уравнение, может быть легко реализована, если проверяемые корни – «хорошие» числа, а для «громоздких» корней проверка может быть сопряжена со значительными вычислительными трудностями. Поэтому каждый образованный школьник должен уметь решать иррациональные уравнения с помощью равносильных преобразований, так как, выполняя равносильные преобразования, можно не опасаться ни потери корней, ни приобретения посторонних решений. [17]

Аккуратное возведение в четную степень уравнения вида

состоит в переходе к равносильной ему системе:

Неравенство

в этой системе выражает условие, при котором уравнение можно возводить в четную степень, отсекает посторонние решения и позволяет обходиться без проверки. [17]

Школьники довольно часто добавляют к этой системе неравенство

. Однако этого делать не нужно и даже опасно, поскольку условие
автоматически выполняется для корней уравнения
, в правой части которого стоит неотрицательное выражение. [9]