6) Двухпиковый тип (бимодальный тип). В окрестностях середины основания частота низкая, зато есть по пику с каждой стороны (рис. 2.4.6).
Примечание. Такая форма встречается, когда смешиваются два распределения с далеко отстоящими средними значениями, то есть имеет смысл провести расслоение данных. Такую же форму гистограммы можно наблюдать и в случае, когда какой-либо преобладающий фактор меняет свои характеристики, например, если режущий инструмент имеет сначала ускоренный, а затем замедленный износ.
7) Распределение с изолированный пиком. Наряду с распределением обычного типа появляется маленький изолированный пик (рис. 2.4.7)
Примечание. Такая форма появляется при наличии малых включений данных из другого распределения или ошибки измерения. При получении подобной гистограммы следует прежде всего проверить достоверность данных, а в том случае, когда результаты измерений не вызывают сомнения, продумать обоснованность выбранного способа разбиения наблюдаемых значений на интервалы
2.4.3 Оценка процесса по гистограммам
При использовании гистограмм для оценки качества процесса на шкале значений наблюдаемого параметра отмечают нижнюю и верхнюю границы поля допуска (поля спецификации) и через эти точки проводят две прямые параллельные столбцам гистограммы.
Если вся гистограмма оказывается внутри границ поля допуска (рис. 2.4.8), процесс статистически устойчив и не требует никакого вмешательства.
Если левая и правая границы гистограммы совпадают с границами поля допуска (рис. 2.4.9), то желательно уменьшить разброс процесса, так как любое воздействие может привести к появлению изделий, не удовлетворяющих допуску.
Если часть столбцов гистограммы оказывается за границами поля допуска (рис. 2.4.10 - 2.4.12), то необходимо провести регулировку процесса так, чтобы сместить среднее ближе к центру поля допуска (рис. 2.4.10,2.4.12) или уменьшить вариации, чтобы добиться меньшего разброса (рис. 2.4.11, 2.4.12).
2.5 Диаграммы рассеивания
Часто приходится выяснять, существует ли зависимость между двумя различными параметрами процесса. Например, зависят ли изменения в диаметре отверстия от изменений скорости вращения сверла.
Обычно предполагается, что исследуемые параметры отражают характеристики качества и влияющие на них факторы. Чтобы понять, есть ли какая-либо связь между рассматриваемыми параметрами, используют диаграммы рассеивания.
Диаграмма рассеивания - это графическое представление пар исследуемых данных в виде множества точек на координатной плоскости.
Диаграмма рассеивания дает возможность выдвинуть гипотезу о наличии или отсутствии корреляционной связи (см. раздел 6.5) между двумя случайными величинами. При этом изучаются обычно величины, описывающие
• характеристику качества и влияющий на нее фактор;
• две различные характеристики качества;
• два фактора, влияющие на одну характеристику качества.
2.5.1 Построение диаграммы рассеивания (поля корреляции)
1) Собрать парные данные (х,у) об изучаемых случайных величинах. Для удобства эти данные записывают в виде таблицы. Желательно, чтобы число наблюдений было не меньше 30, так как в противном случае результаты корреляционного и регрессионного анализа (см. раздел 6.5) недостаточно достоверны.
2) Ввести на плоскости систему координат Оху, причем шкалы на горизонтальной и вертикальной осях подбираются таким образом, чтобы обе длины рабочих частей получились примерно одинаковыми. В этом случае диаграмма рассеивания более удобна для визуального анализа.
3) Каждую пару данных отметить на координатной плоскости точкой с координатами (х,у). Если какие-либо пары повторяются, то соответствующие им точки надо либо ставить рядом, либо использовать условные обозначения, например, концентрические кружки.
4) Сделать поясняющие надписи, то есть название диаграммы; интервал времени, который отражается на диаграмме; число пар данных; названия и единицы измерения для каждой оси; данные о составителе диаграммы.
2.5.2 Анализ диаграммы рассеивания
Если на диаграмме рассеивания есть далеко отстоящие точки (выбросы), необходимо исследовать причины их появления (ошибки измерения или записи данных, либо изменения в условиях работы). При этом можно получить неожиданную, но иногда весьма полезную информацию, однако из последующего корреляционного анализа эти точки обычно исключают.
Если точки расположены хаотично (рис. 2.5.3), то полагают, что между рассматриваемыми случайными величинами нет корреляции.
Если точки группируются таким образом, что явно выражена некоторая тенденция (рис. 2.5.1, 2.5.2), то говорят о положительной (рис. 2.5.1) или отрицательной (рис. 2.5.2) корреляции.
Если точки расположены так, что можно предположить нелинейную зависимость (рис. 2.5.4), то бывает полезно осуществить расслоение (стратификацию) данных, то есть разделение данных по какому-либо дополнительному признаку. (Например, при исследовании зависимости равномерности окраски от марки применяемого красителя можно отдельно учесть степень загрузки резервуара для краски)
Так как всегда может оказаться, что требуется провести расслоение или осуществить группировку собранных данных каким-либо иным способом, то необходимо очень тщательно подходить к исходной информации. Кроме того, становиться понятным требование полноты поясняющих надписей на диаграмме рассеивания. Любые выводы, сделанные на основании диаграммы рассеивания, должны сопровождаться подробным перечислением условий сбора данных и составления этой диаграммы.
Во всех случаях после визуального анализа диаграммы рассеивания необходимо вычислить коэффициент корреляции по формулам (6.6.1) -(6.6.4). Это позволит подтвердить или опровергнуть выдвинутую гипотезу о наличии либо отсутствии корреляционной связи и установить силу этой связи.
Если диаграмма рассеивания позволяет предположить линейную корреляцию между изучаемыми величинами, то строятся линии регрессии, уравнения которых получают по формулам (6.6.7) - (6.6.9).
Прямые регрессии наносят обычно на диаграмму рассеивания, что позволяет более наглядно представить себе тенденцию влияния одной случайной величины на другую. При проведении регрессионного анализа предварительное построение диаграммы рассеивания является необходимым этапом, так как анализ этой диаграммы позволяет выдвинуть гипотезу о линейной или нелинейной зависимости, о степени доверия к обрабатываемым результатам измерений и даже о надежности методики проведения экспериментов.
Например, при обработке четырех различных множеств исходных данных, приведенных на рисунке 2.5.5, формулы (6.6.7) - (6.6.9) дают одинаковые прямые регрессии. Однако по диаграммам рассеивания можно предположить, что в случае а) действительно имеет место линейная корреляция; в случае b) - нелинейная зависимость, в случае с) есть одна выпавшая точка, в случае d) наблюдается «странная» группировка точек. Отсюда следует, что в случае с) надо повторить измерения либо обосновать возможность пренебрежения этим результатом; в случае d) необходимо получить дополнительные данные.
2.6 Контрольные карты
2.6.1 Виды контрольных карт и область их применения
Поскольку всякий процесс испытывает большое число незначительных случайных воздействий, то результаты измерений, полученные в ходе нормального течения процесса, непостоянны, то есть всякий процесс имеет некоторую изменчивость (разброс).
Считается, что процесс находится в статистически управляемом состоянии, если в нем отсутствуют систематические сдвиги. В этом состоянии можно предсказывать ход процесса. Но как только на процесс станут воздействовать неслучайные (особые) причины, он станет статистически неуправляемым, а результат процесса окажется непредсказуем. Если процесс выведен из статистически управляемого состояния, то требуется определенное вмешательство, чтобы сделать его снова статистически управляемым.
Чтобы судить о состоянии процесса, осуществляют отбор единиц продукции и измеряют контролируемые параметры. Совокупность отобранных объектов (наблюдаемых значений) образуют выборку (см. раздел 6.1.).
Для сравнения информации о текущем состоянии процесса, полученной по выборке, с контрольными границами, являющимися пределами собственного разброса, применяют контрольные карты.
Контрольная карта - это графическое представление характеристики процесса, состоящее из центральной линии, контрольных границ и конкретных значений имеющихся статистических данных, позволяющее оценить степень статистической управляемости процесса.
Существует много разных типов контрольных карт в зависимости от природы данных, вида статистической обработки данных и методов принятия решений.
В зависимости от сферы применения выделяют три основных вида контрольных карт (рис. 2.6.1):
• контрольные карты Шухарта и аналогичные им, позволяющие оценить, находится ли процесс в статистически управляемом состоянии;
• приемочные контрольные карты, предназначенные для определения критерия приемки процесса;
• адаптивные контрольные карты, с помощью которых регулируют процесс посредством планирования его тренда (тенденции изменения процесса с течением времени) и проведения упреждающей корректировки на основании прогнозов.
Данные для контрольных карт разделяют на "количественные" и «качественные».
Количественные данные - это результаты наблюдений, проводимых с помощью измерения и записи числовых значений данного показателя (при этом используется непрерывная шкала значений).
Качественные (альтернативные) данные - это результаты наблюдений наличия (или отсутствия) определенного признака. Обычно подсчитывают, сколько элементов выборки имеют данный признак (например, сколько деталей из контролируемой партии имеют внешние дефекты). Иногда считают число таких признаков, имеющихся в выборке определенного объема (например, количество различных дефектов, отмеченных в одном изделии).