Смекни!
smekni.com

Математические методы экономики (стр. 11 из 22)

Для решения этой задачи нужно воспользоваться формулой

Как видим, возможны два способа: 1) вычислить Х = ВY, а затем приме­нить формулу L=(t,x); 2) вычислить коэффициенты полных затрат труда Т =BTt и далее L=(Т,Y). Но в обоих случаях необходимо сначала вычислить

матрицу В.

Первый способ:

Второй способ:

Важнейшую часть национального богатства составляют основные производственные фонды, представляющие собой материально-техническую базу народного хозяйства. Основные производственные фонды - это средства труда, функционирующие во всех отраслях материального производства. К основным производственным фондам относят только продукты общественного труда, начавшие функционирование в производстве.

Основные производственные фонды весьма различны по своему вещественно-материальному составу и назначению. Одни создают условия для осуществления производственного процесса, другие выполняют транспортные функции, при помощи третьих осуществляется производственный процесс и т.д. В настоящее время в практике нашей статистики принята следующая единая типовая классификация основных производственных фондов по всему народному хозяйству.

· Здания.

· Сооружения.

· Передаточные устройства.

· Машины и оборудование, в том числе: силовые машины и оборудование, из них автоматические, рабочие машины и оборудование, из них автоматические, измерительные и регулирующие приборы и устройства и лабораторное оборудование, из них автоматические, вычислительная техника, в том числе автоматическая, прочие машины, из них автоматические.

· Транспортные средства.

· Инструменты.

· Производственный инвентарь и принадлежности.

· Хозяйственный инвентарь.

· Рабочий и продуктивный скот.

· Многолетние насаждения

· Капитальные затраты по улучшению земель.

· Прочие основные фонды.

По отдельным отраслям материального производства эта типовая классификация конкретизируется с учетом особенностей отрасли.

Основные фонды занимают, как правило, основной удельный вес в общей сумме основного капитала предприятия. От их количества, стоимости, технического уровня, эффективности использования во многом зависят конечные результаты деятельности предприятия: выпуск продукции, ее себестоимость, прибыль, рентабельность, устойчивость финансового состояния.

Для обобщающей характеристики эффективности использования основных средств служат показатели рентабельности (отношение прибыли к среднегодовой стоимости основных производственных фондов), фондоотдачи (отношение стоимости произведенной или реализованной продукции после вычета НДС, акцизов к среднегодовой стоимости основных производственных фондов), фондоемкости (обратный показатель фондоотдачи), удельных капитальных вложений на один рубль прироста продукции

Динамическая модель межотраслевого баланса. Открытая и замкнутая динамические модели. Сбалансированная траектория развития экономики в линейной модели с продуктивной матрицей коэффициентов прямых материальных затрат.

Следующим представителем класса линейных моделей экономики является модель, построенная в середине 1930-х годов австрийским математиком Джоном фон Нейманом. По сравнению с моделью Леонтьева, которую можно использовать для планирования производства на одном плановом периоде в целом (год, пятилетка и т.д.), модель Неймана отслеживает производственный процесс внутри планового периода, т.е. затраты и выпуск, осуществляемые в каждый период времени (от квартала в квартал, от года в год и т.д.). Поэтому она обобщает модель Леонтьева в двух аспектах: в динамическом плане и в плане многопродуктовых отраслей. В модели Неймана предполагается, что экономика функционирует эффективным образом сколь угодно долго. Логическим следствием такой предпосылки является рост производственных возможностей во времени с нарастающими темпами. Поэтому модель Неймана описывает "расширяющуюся" экономику.

Для вывода этой схемы рассмотрим функционирование экономики на некотором конечном периоде времени [0,T] . Отрезок [0,T] разобьем точками

, k=0,1,...,T, так, чтобы получилась возрастающая последовательность моментов времени

Тогда получаем последовательность полуинтервалов

длины
, покрывающих весь отрезок [0,T] . Момент
будем трактовать как начальный момент планирования производства товаров, а момент
- как плановый горизонт. В дальнейшем во всех отношениях удобно полагать
и трактовать моменты
как годы. При этих обозначениях мы будем писать
.

В этом параграфе, как и в модели Леонтьева, будем предполагать, что экономика состоит из n чистых отраслей с постоянными технологиями, описываемыми матрицей A. Планирование опять будем понимать по схеме затраты-выпуск при известном спросе на товары, но теперь уже с учетом фактора времени.

Под планом производства на отрезке времени [0,T] будем понимать совокупность

Здесь каждая строка соответствует плану

в год t ;
- вектор запасов товаров,
- вектор валового выпуска. Каждая компонента
считается максимально возможным при существующих основных фондах выпуском отрасли j. Валовый выпуск отрасли может быть увеличен путем дополнительных вложений, и этот показатель также включается в план. Вектор
обозначает планируемое в год t увеличение (приращение) валового выпуска. Наконец, число lt показывает общее количество нанятых во всех отраслях рабочих в год t.

Труд, как вид товара, не рассматривался в исходной модели Леонтьева. Особенность данного товара заключается в том, что он, во-первых, являясь воспроизводимым ресурсом, в то же время не является продуктом какой-либо отрасли, во-вторых, как фактор в производственном процессе, занимает промежуточное положение между материальными ресурсами и готовой продукцией. Никакое производство не может обходиться без трудовых затрат. Единицей ее измерения является рабочая сила. Необходимое для отрасли количество рабочей силы определяется трудовыми затратами, вложенными в выпуск одной единицы продукции. Данный параметр для отрасли j обозначим

. Тогда число рабочих в отрасли j в год t равно
. Вектор
называется вектором трудовых затрат.

Обозначим через

, j=1,...,n, объемы материальных затрат, необходимых для приращения на одну единицу выпуска товара i. Тогда материальные затраты на одновременное приращение выпусков всех отраслей на величины
будут исчисляться как
, где
- технологическая матрица приращения производства.

Наглядную картину межотраслевых связей во времени при плане производства

, плане конечного потребления на одного работающего на весь плановый период
и при постоянных технологиях производства и его приращения показывает схема динамического межотраслевого баланса (рис. 6.2). Эта схема составляется для каждого года
, причем при
есть валовый выпуск отрасли j к началу планового периода.

Балансовый характер этой схемы заключается в том, что ее элементы должны удовлетворять следующим (балансовым) соотношениям: