Смекни!
smekni.com

Математические методы экономики (стр. 13 из 22)

Идею применения статистических данных для построения производственной функции можно объяснить так: Имеются известные величины (реальные результаты производства) и одно неизвестное выражение f, их связующее. Наблюдая в течение достаточно большого периода времени функционирования производства за различными значениями затрат

и соответствующими им значениями выпуска y, можно выявить закономерность f :

Кратко остановимся на этапах построения производственной функции. Пусть нам известны виды ресурсов (

), используемых для выпуска данной продукции, и имеется необходимое количество статистических данных по объемам затрат
и выпуска y. Требуется установить зависимость
, т.е. найти аналитический вид производственной функции f. Эта задача распадается на два этапа:

спецификация функции f, т.е. выявление общего вида функции f от аргументов

с неопределенными параметрами (коэффициентами и показателями степеней при
и свободным членом);

оценка параметров - определение конкретных числовых значений неизвестных параметров.

Картина "расположения" статистических данных в пространстве затраты-выпуск может подсказать линейный или нелинейный характер зависимости функции f от аргументов

. Например, в случае линейной производственной функции результатом спецификации будет гипотеза о линейной зависимости вида

в случае производственной функции Кобба-Дугласа - в виде мультипликативной функции

в случае производственной функции CES - в виде степенного многочлена

и т.д. Здесь

являются неизвестными параметрами, подлежащими определению (оценке).

Чаще остальных на практике применяется аппроксимация вида (4.4.1) , называемая линейной регрессией (см. §9.2 ). Для определения ее параметров используется (линейный) метод наименьших квадратов (см. §9.3 ). В некоторых случаях к линейной аппроксимации удается свести и нелинейные относительно ресурсов производственные функции. Например, логарифмируя функцию (4.4.2) , получим:

Далее, вводя обозначения

приходим к линейной регрессии вида (4.4.1) :

Применяя такой способ на основе статистических данных упомянутого выше периода, Кобб и Дуглас получили следующую оценку параметров для своей функции:

и, следовательно, их производственная функция выглядела так:

Дальнейший анализ показал, что за исключением некоторых случаев (например, учета технического прогресса), имеет место соотношение

. Так как величина
показывает эластичность производства, равенство
является признаком линейной однородности производственной функции (см. §4.3 и пример 4.1 ). Этот факт позволяет записывать функцию Кобба-Дугласа в виде
, где
.

В отличие от функции Кобба-Дугласа, функция (4.4.3) даже после логарифмирования остается нелинейной. Поэтому для оценки параметров функции CES применяется более сложный нелинейный метод наименьших квадратов. Изложение этого метода и реализацию его алгоритма на языке программирования Бейсик интересующийся читатель может найти в книге [ 14 ].

При спецификации производственной функции, т.е. при решении вопроса о ее принадлежности к тому или иному классу известных функций, может быть полезным знание тех или иных числовых характеристик этих классов функций (отношение средних и предельных показателей, предельная норма замещения, эластичность и др.). Например, при моделировании двухфакторного производства (

) на основе имеющейся статистики
можно составить дискретный (разностный) аналог показателя эластичности по капиталу

Если эта величина приблизительно равна постоянному числу для всех t и

, для которых разность
достаточно мала, то искомая функция может принадлежать классу функций Кобба-Дугласа. Точно так же, дискретный аналог эластичности замещения может внести ясность относительно принадлежности искомой функции к классу функций CES.

Выделение существенных видов ресурсов (факторов производства) и выбор аналитической формы ПФ называется спецификацией ПФ.

Преобразование реальных и экспертных данных в модельную информацию, т.е. расчет численных значений параметров ПФ на базе статистических данных с помощью регрессионного и корреляционного анализа, называется параметризацией ПФ.

Проверка истинности (адекватности) ПФ называется ее верификацией.

Спецификация определяется, прежде всего, теоретическими соображениями, которые учитывают макро и микроэкономические особенности объекта исследования, параметризация также использует для сглаживания результатов ряда лет методы наименьших квадратов.

Моделирование производственных процессов. Факторы производства. Неоклассическая производственная функция, и её свойства. Предельные и средние продукты факторов производства. Эластичность выпуска по факторам производства. Изокванты. Предельные нормы и эластичность замещения факторов производства. Основные виды ПФ выпуска. Равновесие производителя.

Под производством понимается процесс взаимодействия экономических факторов, завершаемый выпуском какой-либо продукции. Правила, предписывающие определенный порядок взаимодействия экономических факторов, составляют способ производства или, иначе говоря, технологию производства. Производство - основная область деятельности фирмы (или предприятия). Фирма - это организация, производящая затраты экономических ресурсов для изготовления продукции и услуг, которые она продает потребителям, в том числе, другим фирмам. Производственными единицами являются не только заводы и фабрики, но и отдельные лица - фермеры, ремесленники и др.

Производство можно представить как систему "затраты-выпуск", в которой выпуском является то, что фактически произведено, а затратами - то, что потребляется с целью выпуска (капитал, труд, энергия, сырье). Поэтому формально можно сказать, что производство - это функция, которая каждому набору затрат и конкретной технологии ставит в соответствие определенный выпуск. Именно такое упрощенное понимание производства как "черного ящика" заложено в математической модели производства. Во "вход" этого черного ящика подаются затраты, а на "выходе" получаем выпуск (произведенную продукцию).

Подобное описание производства на первый взгляд кажется сильно абстрактным, так как в нем не отражены технологические процессы, происходящие внутри черного ящика. В математической модели технология производства учитывается обычно посредством задания соотношений между затратами и выпуском т.е. нормой затрат каждого из ресурсов, необходимых для получения одной единицы выпускаемой продукции. Такой подход объясняется тем, что математическая экономика изучает суть экономических процессов, а сугубо технические операции как таковые (а не их экономические следствия) остаются за рамками этой науки.