Смекни!
smekni.com

Математические методы экономики (стр. 18 из 22)

Если

то говорят о возрастающем (убывающем) доходе от расширения масштаба производства. Заметим, что свойство 4 определено в точке, тогда как свойства 1 и 2 - во всем пространстве затрат.

Как мы видим, перечисленные (желательные) свойства производственной функции вполне согласуются с ее определением, так как они касаются только соотношения затраты-выпуск. Действительно, здесь нет никаких требований на бесперебойную работу станков, нормирования движения конвейера и т.д. Поэтому производственная функция, как отображение количественной связи между затратами и выпуском, представляет собой регрессионную модель (см. §2.5 ). Следовательно, она может быть построена на основе статистических данных и с применением методов математической статистики. Оставляя подробное обсуждение этого вопроса до §4.4 , сейчас мы приведем примеры наиболее удачно построенных и потому часто применяемых на практике производственных функций. При этом для простоты будем рассматривать двухфакторную однопродуктовую производственную функцию вида

Производственная функция Кобба-Дугласа. Первый успешный опыт построения производственной функции, как уравнения регрессии на базе статистических данных, был получен американскими учеными - математиком Д. Коббом и экономистом П. Дугласом в 1928 году. Предложенная ими функция изначально имела вид:

где Y - объем выпуска, K - величина производственных фондов (капитал), L - затраты труда,

- числовые параметры (масштабное число и показатель эластичности). Благодаря своей простоте и рациональности, эта функция широко применяется до сих пор и получила дальнейшие обобщения в различных направлениях. Функцию Кобба-Дугласа иногда мы будем записывать в виде

Легко проверить, что

и

Кроме того, функция (4.2.4) линейно-однородна:

.

Таким образом, функция Кобба-Дугласа (4.2.4) обладает всеми вышеуказанными свойствами.

Для многофакторного производства функция Кобба-Дугласа имеет вид:

Для учета технического прогресса в функцию Кобба-Дугласа вводят специальный множитель (технического прогресса)

, где t - параметр времени,
- постоянное число, характеризующее темп развития. В результате функция принимает "динамический" вид:

где не обязательно

. Как будет показано в следующем параграфе, показатели степени в функции (4.2.4) имеют смысл эластичности выпуска по капиталу и труду.

Производственная функция CES (с постоянной эластичностью замещения) имеет вид:

где

- коэффициент шкалы,
- коэффициент распределения,
- коэффициент замещения,
- степень однородности. Если выполнены условия

то функция (4.2.5) удовлетворяет неравенствам (4.2.2) и (4.2.3) (проверьте это самостоятельно). С учетом технического прогресса функция CES записывается:

Название данной функции следует из того факта, что для нее эластичность замещения постоянна (см. §4.3 ).

Производственная функция с фиксированными пропорциями. Эта функция получается из (4.2.5) при

и имеет вид:

Производственная функция затрат-выпуска (функция Леонтьева) получается из (4.2.6) при

:

Содержательно эта функция задает пропорцию, с помощью которой определяется количество затрат каждого вида, необходимое для производства одной единицы выпускаемой продукции. Поэтому в литературе часто встречаются другие формы записи:

или

Здесь

- количество затрат вида k, необходимое для производства одной единицы продукции, а y - выпуск.

Производственная функция анализа способов производственной деятельности. Данная функция обобщает производственную функцию затрат-выпуска на случай, когда существует некоторое число (r) базовых процессов (способов производственной деятельности), каждый из которых может протекать с любой неотрицательной интенсивностью. Она имеет вид "оптимизационной задачи"

Здесь

- выпуск продукции при единичной интенсивности j-го базового процесса,
- уровень интенсивности,
- количество затрат вида k, необходимых при единичной интенсивности способа j. Как видно из (4.2.8) , если выпуск, произведенный при единичной интенсивности и затраты, необходимые на единицу интенсивности, известны, то общий выпуск и общие затраты находятся путем сложения выпуска и затрат соответственно для каждого базового процесса при выбранных интенсивностях. Заметим, что задача максимизации функции f по
в (4.2.8) при заданных ограничениях-неравенствах является моделью анализа производственной деятельности (максимизация выпуска при ограниченных ресурсах).

Линейная производственная функция (функция с взаимозамещением ресурсов) применяется при наличии линейной зависимости выпуска от затрат:

где

- норма затрат k-го вида для производства единицы продукции (предельный физический продукт затрат).

Методы математического моделирования рисковых ситуаций. Риск и неопределенность в осуществлении экономической деятельности. Место методов математического моделирования в общей схеме управления риском. Основные механизмы управления риском — прямое воздействие на факторы риска и диверсификация. Цели моделирования механизмов управления риском. Методы моделирования неопределенности и риска экономической деятельности.

Любая сфера человеческой деятельности, в особенности эконо­мика или бизнес, связана с принятием решений в условиях неполно­ты информации. Источники неопределенности могут быть самые разнообразные: нестабильность экономической и/или политической ситуации, неопределенность действий партнеров по бизнесу, слу­чайные факторы, т.е. большое число обстоятельств, учесть которые не представляется возможным (например, погодные условия, неоп­ределенность спроса на товары, неабсолютная надежность процес­сов производства, неточность информации и др.). Экономические решения с учетом перечисленных и множества других неопределен­ных факторов принимаются в рамках так называемой теории приня­тия решений - аналитического подхода к выбору наилучшего дейст­вия (альтернативы) или последовательности действий. В зависимо­сти от степени определенности возможных исходов или последст­вий различных действий, с которыми сталкивается лицо, прини­мающее решение (ЛПР), в теории принятия решений рассматрива­ются три типа моделей:

• выбор решений в условиях определенности, если относительно каждого действия известно, что оно неизменно приводит к некото­рому конкретному исходу;

• выбор решения при риске, если каждое действие приводит к одному из множества возможных частных исходов, причем каждый исход имеет вычисляемую или экспертно оцениваемую вероятность появления. Предполагается, что ЛПР эти вероятности известны или их можно определить путем экспертных оценок;