Смекни!
smekni.com

Математические методы экономики (стр. 20 из 22)

Предположим, что функционирование j-го процесса (

) с единичной интенсивностью требует затрат продуктов в количестве

и дает выпуск товаров в количестве

Введем обозначения

. Пара
характеризует технологический потенциал, заложенный в j-ом процессе (его функционирование с единичной интенсивностью). Поэтому пару
можно назвать базисом j-го производственного процесса, имея в виду, что для любой интенсивности
соответствующую пару затраты-выпуск можно выразить как
. Поэтому последовательность пар

представляющих собой затраты и выпуски всех производственных процессов в условиях их функционирования с единичными интенсивностями, будем называть базисными процессами.

Все m базисных процессов описываются двумя матрицами

где A- матрица затрат, B- матрица выпуска. Вектор

называется вектором интенсивностей. Соответствующие этому вектору затраты и выпуски по всем m процессам можно получить как линейную комбинацию базисных процессов (6.4.1) с коэффициентами
:

Говорят, что в производственном процессе

базисные процессы (6.4.1) участвуют с интенсивностями
. Как видно из (6.4.2) , неймановская технология, описываемая двумя матрицами A и B единичных уровней затрат и выпуска, является линейной (см. предпосылку 1) в начале параграфа). Рассматривая все допустимые "смеси" базисных процессов, получаем расширенное множество производственных процессов

которое и отражает допустимость совместной деятельности отраслей. Возможность совместного производства нескольких продуктов в одном процессе следует из того, что в каждом процессе j может быть отличной от нуля более чем одна из величин

. Множество (6.4.3) представляет собой неймановскую технологию в статике (в момент t ). Если в матрице A положить n=m, матрицу B отождествить с единичной матрицей, а
интерпретировать как вектор валового выпуска, то (6.4.2) превращается в леонтьевскую технологию.

Продолжим описание модели Неймана. Согласно предпосылок 2) и 3), затраты

в момент t не могут превышать выпуска
, соответствующего предыдущему моменту t-1 (рис. 6.3).

Поэтому должны выполняться условия:

где

- вектор запаса товаров к началу планируемого периода.

Обозначим через

, вектор цен товаров. Неравенство (6.4.4) можно трактовать как непревышение спроса над предложением в момент t. Поэтому в стоимостном выражении (в ценах момента t) должно быть:

По предположению 5) прибыль базисного процесса

на отрезке [t-1,T] равна величине
, т.е. затраты осуществляются по цене начала периода, а готовая продукция - по цене момента ее реализации. Таким образом, издержки по всем базисным процессам можно записать как
, а выручку - как
(рис. 6.4).

Будем говорить, что базисные процессы неубыточны, если

, неприбыльны - если

В модели Неймана предполагается неприбыльность базисных процессов. Это объясняется тем, что издержки и выручки разведены во времени, т.е. относятся к разным моментам времени, и в условиях расширяющейся экономики "характерен случай падения цен (

)", т.е. покупательская способность денег в момент t будет выше, чем в момент t-1. С таким обоснованием можно согласиться или не согласиться. Главная же причина неприбыльности базисных процессов заложена в определении экономического равновесия. Поясним это чуть подробнее.

Основной предмет исследования Дж. фон Неймана - это возможность существования равновесия в рассматриваемой им динамической модели экономики при заданных в каждый момент ценах. Как следует из определения 5.2, при равновесии в условиях совершенной конкуренции имеет место стоимостной баланс (см. (5.3.8)). Таким образом, в условиях равновесия не создается никакой прибыли, и неравенство http://www.csu.ac.ru/%7Erusear/ME_Ruda/Chapter6/par6_4.html - %286.4.6.%29(6.4.6) является отражением этого факта. Поэтому, если в (6.4.6) для некоторого базисного процесса j имеет место строгое неравенство, т.е. предложение превышает спрос:

то должно быть

. Иначе говоря, отсутствие "отрицательной прибыли" обеспечивается нулевой интенсивностью. Отсюда получаем

Описание модели Неймана завершено. Совокупность неравенств и уравнений (6.4.4) -(6.4.7) :

где

и
- матрицы затрат и выпуска соответственно, называется (динамической) моделью Неймана.

Определение 6.2. Говорят, что в экономике наблюдается сбалансированный рост производства, если существует такое постоянное число

, что для всех m производственных процессов

Постоянное число

называется темпом сбалансированного роста производства.

Содержательно (6.4.9) означает, что все уровни интенсивности возрастают одинаковыми темпами

Раскрывая рекуррентно правую часть (6.4.9), получаем

где

- интенсивность процесса j , установившаяся к началу планового периода. Заметим, что t в правой части (6.4.10) является показателем степени, а в левой - индексом.

В случае сбалансированного роста производства, с учетом постоянства темпа роста, последовательность

называется стационарной траекторией производства.

Определение 6.3. Говорят, что в экономике наблюдается сбалансированное снижение цен, если существует такое постоянное число

, что для всех n товаров

Постоянное число

называется нормой процента.

Содержательно (6.4.11) означает, что цены на все товары снижаются одинаковыми темпами