Смекни!
smekni.com

Нейрокомпьютерные системы 2 (стр. 13 из 18)

Даже при прогнозировании требования на достаточно стабильный продукт на основе информации о ежемесячных продажах, возможно мы не сможем накопить историю за период от 50 до 100 месяцев. Для сезонных процессов проблема еще более сложна. Каждый сезон истории фактически представляет собой одно наблюдение. То есть, в ежемесячных наблюдениях за пять лет будет только пять наблюдений за январь, пять наблюдений за февраль и т.д. Может потребоваться информация за большее число сезонов для того, чтобы построить сезонную модель. Однако, необходимо отметить, что мы можем построить удовлетворительную модель на НС даже в условиях нехватки данных. Модель может уточняться по мере того, как свежие данные становится доступными.

Другим недостатком нейронных моделей - значительные затраты

по времени и другим ресурсам для построения удовлетворительной модели. Эта проблема не очень важна, если исследуется небольшое число временных последовательностей. Тем не менее, обычно прогнозирующая система в области управления производством может включать от нескольких сотен до нескольких тысяч временных последовательностей.

Однако, несмотря на перечисленные недостатки, модель обладает рядом достоинств. Существует удобный способ модифицировать модель по мере того как появляются новые наблюдения. Модель хорошо работает с временными последовательностями, в которых мал интервал наблюдений, т.е. может быть получена относительно длительная временная последовательность. По этой причине модель может быть использована в областях, где нас интересуют ежечасовые, ежедневные или еженедельные наблюдения. Эти модели также используются в ситуациях, когда необходимо анализировать небольшое число временных последовательностей.

Применение нейрокомпьютеров в медицине

Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии.

Статистика такова: врач правильно диагностирует инфаркт миокарда у 88% больных и ошибочно ставит этот диагноз в 29% случаев. Ложных тревог (гипердиагностики) чересчур много. История применения различных методов обработки данных для повышения качества диагностики насчитывает десятилетия, однако лучший из них помог сократить число случаев гипердиагностики лишь на 3%.

В 1990 году Вильям Бакст из Калифорнийского университета в Сан-Диего использовал нейронную сеть - многослойный персептрон - для распознавания инфаркта миокарда у пациентов, поступающих в приемный покой с острой болью в груди. Его целью было создание инструмента, способного помочь врачам, которые не в силах справиться с потоком данных, характеризующих состояние поступившего больного. Другой целью может быть совершенствование диагностики. Свою задачу исследователь усложнил, поскольку анализировал данные только тех пациентов, кого уже направили в кардиологическое отделение. Бакст использовал лишь 20 параметров, среди которых были возраст, пол, локализация боли, реакция на нитроглицерин, тошнота и рвота, потение, обмороки, частота дыхания, учащенность сердцебиения, предыдущие инфаркты, диабет, гипертония, вздутие шейной вены, ряд особенностей ЭКГ и наличие значительных ишемических изменений.

Сеть продемонстрировала точность 92% при обнаружении инфаркта миокарда и дала только 4% случаев сигналов ложной тревоги, ошибочно подтверждая направление пациентов без инфаркта в кардиологическое отделение. Итак, налицо факт успешного применения искусственных нейронных сетей в диагностике заболевания. Теперь необходимо пояснить, в каких параметрах оценивается качество диагноза в общем случае. Предположим, что из десяти человек, у которых инфаркт действительно есть, диагностический метод позволяет обнаружить заболевание у восьми. Тогда чувствительность метода составит 80%. Если же мы возьмем десять человек, у которых инфаркта нет, а метод диагностики заподозрит его у трех человек, то доля ложных тревог составит 30%, при этом дополнительная к нему характеристика - специфичность метода - будет равна 70%.

Идеальный метод диагностики должен иметь стопроцентные чувствительность и специфичность - во-первых, не пропускать ни одного действительно больного человека и, во-вторых, не пугать здоровых людей. Чтобы застраховаться, можно и нужно стараться прежде всего обеспечить стопроцентную чувствительность метода - нельзя пропускать заболевание. Но в это оборачивается, как правило, низкой специфичностью метода - у многих людей врачи подозревают заболевания, которыми на самом деле пациенты не страдают.

Нейронные сети для задач диагностики

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Вспомним, что нейронная сеть, диагностирующая инфаркт, работала с большим набором параметров, влияние которых на постановку диагноза человеку невозможно оценить. Тем не менее нейросети оказались способными принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев. Однако после более внимательного знакомства с этой экспертной системой врачи значительно усовершенствовали традиционные методы диагностики, и MYCIN потерял свое значение, превратившись в учебную систему. Экспертные системы "пошли" только в кардиологии - для анализа электрокардиограмм. Сложные правила, которые составляют главное содержание книг по клиническому анализу ЭКГ, использовались соответствующими системами для выдачи диагностического заключения.

Диагностика является частным случаем классификации событий, причем наибольшую ценность представляет классификация тех событий, которые отсутствуют в обучающем нейросеть наборе. Здесь проявляется преимущество нейросетевых технологий - они способны осуществлять такую классификацию, обобщая прежний опыт и применяя его в новых случаях.

Конкретные системы

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

В медицине находит применение и другая особенность нейросетей - их способность предсказывать временные последовательности. Уже отмечалось, что экспертные системы преуспели в анализе ЭКГ. Нейросети здесь тоже приносят пользу. Ки Чженху, Ю Хену и Виллис Томпкинс из университета штата Висконсин разработали нейросетевую систему фильтрации электрокардиограмм, позволяющую подавлять нелинейный и нестационарный шум значительно лучше, чем ранее использовавшиеся методы. Дело в том, что нейросеть хорошо предсказывала шум по его значениям в предыдущие моменты времени. А то, что нейросети очень эффективны для предсказания временных последовательностей (таких, например, как курс валют или котировки акций), убедительно продемонстрировали результаты соревнования предсказательных программ, проводимых университетом в Санта Фе - нейросети заняли первое место и доминировали среди лучших методов.

Возможности применения нейросетей

ЭКГ - это частное, хотя и исключительно важное приложение. Однако сегодня существует и много других примеров использования нейросетей для медицинских прогнозов. Известно, что длинные очереди в кардиохирургические отделения (от недель до месяцев) вызваны нехваткой реанимационных палат. Увеличить их число не удается из-за высокой стоимости реанимационной помощи (70% средств американцы тратят в последние 2 недели жизни именно в этом отделении).