В отличие от других направлений развития сверхвысокопроизводительной вычислительной техники нейрокомпьютеры дают возможность вести отечественные разработки с использованием имеющегося потенциала электронной промышленности. Необходимо отметить ряд важных особенностей данных работ:
• это направление позволяет создать уникальные суперкомпьютеры на отечественной элементной базе, поскольку для них не так важен уровень развития технологии;
• разработки нейрочипов и нейрокомпьютеров характеризуются переходом от цифровой обработки к аналого-цифровой и аналоговой с целью резкого увеличения отношения производительность/цена при контролируемой точности вычислений;
• для разработки нейрочипов больше подходит полузаказная технология, нежели заказная, из-за относительной "сырости" идей архитектуры алгоритмов и нейрочипов, нехватки времени и средств для проведения работ;
• нейросетевые архитектуры по сравнению с другими приводят к активизации использования новых технологических направлений реализации: нейросистемы на пластине, оптоэлектронные и оптические нейрокомпьютеры, молекулярные нейрокомпьютеры и нанонейроэлементы;
• возникает потребность в универсализации САПР нейрочипов. Сейчас основное внимание разработчиков нейрочипов сосредоточено на системах Компас и SPICE, которые становятся базовыми для таких предприятий как НИИ "Квант", АО "Ангстрем", "Ангстрем РТМ", НИИМЭ, НИИ "Научный центр", НИИМА "Прогресс";
• рождение технологии систем на пластине и нанотехнологии приведет к появлению новых сверхпараллельных архитектур. Уже сейчас ясна адекватность нейросетевых архитектур технологии на пластине (американская и японская разработки). Поэтому попытки на уровне наноэлементов делать функциональные блоки со старой архитектурой, соответствующей однопроцессорным машинам, можно считать бесплодными. Начиная с нанонейроэлементов, мы вплотную подходим к другим принципиально новым архитектурным элементам, образующим сверхпараллельные высокопроизводительные вычислительные системы.
Оценка производительности нейрокомпьютеров
Иллюстрацией преимуществ нейрокомпьютеров по сравнению с другими типами суперкомпьютеров может быть диаграмма из рис. 10, подготовленная известным американским специалистом в области нейрокомпьютеров Хехт-Нильсеном.
Рисунок 10.
Сравнительная диаграмма по соотношению цена/производительность.
Нейрокомпьютеры являются перспективным направлением развития современной высокопроизводительной вычислительной техники, а теория нейронных сетей и нейроматематика представляют собой приоритетные направления российской вычислительной науки, и при соответствующей поддержке, в ближайшее время станут интенсивно развиваться.
Основой активного развития нейрокомпьютеров является принципиальное отличие нейросетевых алгоритмов решения задач от однопроцессорных, малопроцессорных, а также транспьютерных. Для данного направления развития вычислительной техники не так важен уровень развития отечественной микроэлектроники, поэтому оно позволяет создать основу построения российской элементной базы суперкомпьютеров.
Сегодня начинает расширяться сфера коммерческой деятельности в области нейрокомпьютеров или подобных им систем, в частности: нейропакеты; нейроплаты (CNAPS и другие); нейрокомпьютеры (Sinapse и другие); видеокурсы; нейросетевые системы управления электроэррозионными станками; охранные системы с нейросетевыми алгоритмами выделения движущихся объектов; системы "электронного ключа" с распознаванием отпечатков пальцев, рисунка радужной оболочки глаза; экспертная система G2.
Сегодня исследования в области искусственных нейронных сетей (ИНС) обрели заметную динамику. Подтверждением тому служит факт финансирования этих работ в США, Японии и Европе, объем которого исчисляется сотнями миллионов долларов [1]. Растет число публикаций по тематике ИНС, широк и их спектр: от монографий и статей, единодушно признанных основополагающими в данной области [2-5], до обзоров, посвященных прикладным вопросам [6]. Издается несколько журналов, посвященных тематике ИНС, таких, например, как IEEE Transaction on NeuralNetworks, Neural Networks, Neural Computing & Applications. В нашей стране периодически выходят в свет тематические выпуски журнала "Приборостроение" и "Нейрокомпьютер".
Вместе с тем реальные результаты практического применения нейросетевых технологий, особенно у нас, пока немногочисленны. Отчасти это объясняется следующими причинами:
• использование аппарата ИНС имеет свои особенности, которые несвойственны традиционным методам;
• путь от теории нейронных сетей к их практическому использованию требует соответствующей адаптации методологий, отработанных первоначально на модельных задачах;
• вычислительная техника с традиционной архитектурой не лучшим образом приспособлена для реализации нейросетевых методов.
Так, например, один из известных нейросетевых коммерческих продуктов -пакет "BrainMaker" фирмы California Scientific Software принципиально рассчитан на широкий круг пользователей и используется, в частности, в качестве инструмента менеджмента. Однако максимальный эффект от применения этого пакета может быть получен лишь опытным пользователем, знакомым с основами теории нейронных сетей.
Задачи обработки видеоизображений
Одной из наиболее сложных и актуальных задач обработки видеоизображений, представленных последовательностью оцифрованных кадров, является проблема выделения и распознавания движущихся объектов в условиях действия различного рода помех и возмущений. Для ее решения разработана специализированная система, которая осуществляет выделение изображений движущихся объектов на сложном зашумленном фоне, фильтрацию помех, скоростную фильтрацию, отделение объектов от фона, оценку скорости каждого объекта, его идентификацию и сопровождение. Система построена с применением нейросетевых методов и работает с реальными данными телевизионной системы (25 кадров/с, 320х200 пикселов).
Выделение изображений движущихся объектов осуществляется путем построения оценки поля скоростей с помощью многослойной локально-связной нейронной сети оригинальной конструкции. Размерность сети для изображения 320х200 пикселов составляет несколько миллионов нейронов и примерно вчетверо больше синапсов.
Распознавание выделенных силуэтов производится на самоорганизующейся нейронной сети, предварительно обученной на изображениях объектов рассматриваемых классов. Система инвариантна к произвольному движению фона, зашумлению белым шумом до 10%. Вероятность правильного распознавания составляет около 90%.
Система реализована на обыкновенном ПК и специально разработанном программно-аппаратном комплексе, обеспечивающем обработку информации в реальном времени.
Задачи обработки статических изображений
Не менее сложными являются задачи выделения и распознавания объектов на статическом тоновом изображении. В частности, подобные задачи возникают при автоматической обработке спутниковых изображений земной поверхности. Для их решения разработана и реализована на ПК автоматизированная система анализа изображений земной поверхности, полученных в оптическом диапазоне с искусственного спутника Земли. Система в автоматическом режиме обеспечивает выделение на обрабатываемых изображениях объектов заданных классов: дорожной сети, кварталов с характерной застройкой, аэродромов и стоящих на них самолетов.
Нейросетевые принципы, заложенные в систему, позволяют проводить ее обучение и переобучение. Система инвариантна к яркостным характеристикам объектов.
Задачи обнаружения и классификации летательных аппаратов по звуку
Использование нейросетевых технологий для анализа акустического излучения демонстрирует система обнаружения и распознавания летательных аппаратов по издаваемому ими звуку. Для выделения сигнала с заданного направления применяется фазированная антенная решетка с широкополосными сигналами на выходе. Эти сигналы подвергаются предобработке и в оцифрованном виде подаются на вход предварительно обученной нейронной сети для распознавания. Для демонстрации возможностей системы создана специальная программа.
Статистическое исследование с использованием реальных данных, имеющихся в распоряжении разработчика, показало, что система позволяет распознавать объекты различных классов с вероятностью 80%.
Задачи комбинаторной оптимизации
Высокая степень распараллеленности обработки информации позволяет успешно применять нейросетевые технологии для решения задач комбинаторной оптимизации. Среди оптимизационных задач, эффективно решаемых нейросетевыми методами, в первую очередь следует отметить задачи транспортно-ориентированной оптимизации (например, задача коммивояжера и ее модификации) и задачи распределения ресурсов (задача о назначениях, задача целераспределения и другие).
Решение таких задач традиционными методами математического программирования, большинство из которых изначально ориентировано на вычислительную технику с последовательной архитектурой, сопряжено с большими временными затратами, неприемлемыми для многих приложений. При соответствующей аппаратной поддержке нейросетевые методы позволяют значительно повысить оперативность решения данного класса задач, сохраняя высокую точность результата. В частности, для задач распределения разнородных ресурсов по объектам назначения близкие к оптимальным решения могут быть получены на ускорительной плате с 4 процессорами TMS320C40 менее чем за 0,3 секунды. При этом увеличение количества параллельно работающих процессоров позволяет обеспечить рост производительности почти пропорциональный числу процессоров, что подтверждается экспериментально полученными графиками, представленными на рис. 11.