Отсюда получается следующее свойство периодов.
Предложение 3. Количество квадратичных форм, из которых состоит период заданной формы
Доказательство предложения 3 см. [1,2].
Заметим, что каждая форма
Отсюда получается следующее свойство периодов.
Предложение 4. Все целочисленные неопределенные бинарные квадратичные формы с одинаковым дискриминантом могут быть разбиты на периоды.
Доказательство (см. [2] разд. V, п.187) основано на том их свойстве, что периоды либо совпадают либо они попарно не пересекаются и каждая форма попадет только в один из периодов.
Пример. Все приведенные неопределенные формы с дискриминантом
I.
II.
III.
IV.
V.
VI.
Видим что в каждом периоде содержится четное число приведенных форм: в периодах I и II по четыре формы, а в остальных периодах по шесть форм.
Особы интерес представляют так называемые обратные и двусторонние формы, показывающие наряду с гауссовой композицией форм глубокий смысл различия собственной и несобственной эквивалентностью целочисленных бинарных квадратичных форм.
Определение 3. Формы
Замечание. Так как форма
Определение 4. Класс бинарных квадратичных форм, совпадающий с обратным, называется двусторонним классом.
Из этого определения с учетом сделанного выше замечания получается
Предложение 5. Каждая форма двустороннего класса несобственно эквивалентна самой себе.
Доказательство. Пусть
Тогда форма
Предложение 5 доказано.
Определение 5. Форма
Следующие два предложения дают некоторую информацию о строении двусторонних классов.
Предложение 6. В каждом двустороннем классе содержится по крайней мере одна двусторонняя форма.
Предложение 7. В каждом двустороннем классе положительного дискриминанта содержатся две и только две приведенные двусторонние формы.
Доказательство этих предложений имеются в [1,2].
Перейдем теперь к изложению основных результатов этого параграфа. Возникает еще вопрос: всегда ли двусторонняя форма принадлежит некоторому двустороннему классу. Ответ дает следующая теорема
Теорема 1. Каждая двусторонняя форма принадлежит некоторому двустороннему классу .
Доказательство. Пусть
определителя 1, т.е.
Теорема 1 доказана.
В связи с предложением 7 возникает еще следующий вопрос: могут ли быть в периоде форм двустороннего класса приведенные двусторонние формы соседними друг другу? Следующее утверждение дает необходимое условие того, что двусторонние приведенные формы будут соседними.