Приклад Два тіла починають одночасно рухатися рівномірно по прямих
і , що перетинаються під прямим кутом. Перше тіло рухається зі швидкістю 3 км/год по прямій від крапки до крапки , що перебуває на відстані 2 км від крапки . Друге тіло рухається зі швидкістю 4 км/год по прямій від крапки до крапки , що перебуває на відстані 3 км від крапки . Знайти найменшу відстань (у км) між цими тілами під час руху.Рішення. Через
годин перше тіло буде перебуває від крапки на відстані км, а друге --- на відстані км. По теоремі Піфагора відстань між тілами складе. км.Відповідь.
км.Приклад Пункти
й розташовані на прямолінійній магістралі в 9 км друг від друга. З пункту в напрямку пункту виходить автомашина, що рухається рівномірно зі швидкістю 40 км/ч. Одночасно з пункту в тім же напрямку з постійним прискоренням 32 км/год виходить мотоцикл. Знайти найбільшу відстань між машиною й мотоциклом у плині перших двох годин руху.Рішення. Відстань між автомобілем і мотоциклом через
годин складе . .Відповідь. 16 км.
Приклад З пункту
в пункт вийшов пішохід. Не пізніше чим через 40 хв слідом за ним вийшов другий. Відомо, що в пункт один з них прийшов раніше іншого не менш, ніж на 1 годину. Якби пішоходи вийшли одночасно, то вони б прийшли в пункт із інтервалом не більш ніж в 20 хв. Визначити, скільки часу потрібно кожному пішоходу на шлях від до , якщо швидкість одного з них в 1,5 рази більше швидкості іншого.Рішення. Нехай
і (хв) --- час, витрачений відповідно до першим і другим пішоходом на шлях з в , і нехай другий пішохід вийшов пізніше першого на хвилин. Розглянь 2 можливості 1) і 2) . У випадку маємо рівність і системуЗ першої й третьої нерівності одержимо
, з огляду на другу умову одержимо, що , і це у свою чергу дає рівності й . , , .У випадку
маємо й системуАле тому що
, те система не сумісна, і, отже, випадок 2 не може мати місця.Відповідь.
, , .Приклад За розкладом автобус повинен проходити шлях
, що складається з відрізків , , довжиною 5, 1, 4 км відповідно, за 1 годину. При цьому виїжджаючи з пункту в 10 год, він проходить пункт в 10 год 10 хв, пункт в 10год 34 хв. З якою швидкістю повинен їхати автобус, щоб час за яке автобус проходить половину шляху від до (зі швидкістю ), складене із сумою абсолютних величин відхилення від розкладу при проходженні пунктів і , перевищувало абсолютну величину відхилення від розкладу при проходженні пункту не більш, ніж на 28 хв.Рішення. Умова задачі приводить до системи
яка має єдине рішення
.Відповідь. 30 км/ч.
Приклад Відповідно до розкладу катер проходить по ріці, швидкість плину якої 5 км/год, шлях з
у довжиною 15 км за 1 годину. При цьому виходячи з пункту в 12 год, він прибуває в пункти й , що відстоять від на відстань 11 км і 13 км відповідно, в 12 год 20 хв і в 12 год 40 хв. Відомо, що якби катер рухався з у без зупинок з постійною швидкістю (щодо води), те сума абсолютних величин відхилень від розкладу прибуття в пункти , , не перевищувало б зменшеного на півгодини часу, необхідного катеру для проходження 5 км зі швидкістю в стоячій воді. Який з пунктів перебуває вище за течією: або ?