Смекни!
smekni.com

Производство алкидных лаков на примере лака ПФ-060 (стр. 5 из 22)

4) Возможность проведения смолы под вакуумом.

5) Наличие смотрового люка и светового фонаря для наблюдения за состоянием реакционной смеси в процессе и осмотра внутренних частей реактора.

6) Стойкость материала реактора к реакционной смеси и продуктам ее термического разложения.

Цилиндрические вертикальные реакторы полного смешения различаются по конструкции корпуса, виду погружного теплообменного устройства и типу мешалки.

Для охлаждения реакционной используется погружной однорядный змеевик, изготовленный из нержавеющей стали.

На выбор оптимального типа мешалки влияет вязкость реакционной массы и наличие внутри реактора теплообменных устройств. От типа мешалки зависит производительность реактора, качество продукции (исключение перегрева, снижение степени полидисперсности полимеров и олигомеров) и устранение аварийных случаев, вызванных трудностью отвода или подвода тепла. Так как для охлаждения реакционной массы используется внутренний змеевик, то целесообразно применить якорную мешалку.

В соответствии с выбранным способом удаления реакционной воды реактор снабжается оснасткой для азеотропного обезвоживания – теплообменник «труба в трубе», кожухотрубчатый конденсатор и разделительный сосуд.

Теплообменник «труба в трубе» необходим для того, чтобы пары воды и органических растворителей пролетали в виде паров и не конденсировались до того как попадут в кожухотрубчатый конденсатор.

Разделительный сосуд – аппарат со смотровым стеклом для расслоения азеотропного дистиллята: верхний слой (растворитель) непрерывно возвращается в реактор, нижний (вода) – непрерывно сливается в емкость.

Конструкцию корпуса варьируют в зависимости от способа обогрева. В данном проекте будет применен электроиндукционный обогрев, поэтому не требуется рубашка реактора.

Индукционный электрообогрев основан на использовании теплового эффекта вихревых токов, возникающих в толще стальной стенки реактора под действием переменного электрического поля. Реактор с индукционным электрообогревом является своеобразным трансформатором. Вокруг реактора расположены индукционные катушки, представляющие собой как бы первичные обмотки трансформатора, по которым проходит переменный электрический ток. Электрическая энергия передается индукцией вторичной обмотке, роль которой выполняет короткозамкнутый виток – стенка реактора. Вихревые токи в стенке реактора приводят к превращению электрической энергии в тепловую. Таким образом, при индукционном электрообогреве теплота образуется непосредственно в стенке реактора.

Наиболее часто в реакторах для синтеза пленкообразующих веществ устанавливают три катушки. При трех катушках и трехфазном токе наиболее просто осуществляется автоматическое регулирование обогрева реактора. В начале нагревания реакционной массы реакционной массы индукционные катушки соединяются в «треугольник» и подводится максимальное количество электроэнергии. Когда температура реакционной массы приблизится к заданной и будет ниже ее на 2-3оС, происходит автоматическое переключение катушек с «треугольника» на «звезду». Это переключение почти в три раза снижает количество подводимой электроэнергии и тем самым уменьшает опасность перегрева реакционной массы. Дальнейшее регулирование проводится автоматическим выключением и включением катушек.

По сравнению с другими методами обогрева (обогрев высококипящими органическими теплоносителями, обогрев продуктами сгорания топлива, обогрев водяным паром, электрообогрев) электроиндукционный обогрев обладает рядом преимуществ:

1) Исключается тепловое сопротивление от теплоносителя к стенке и можно ограничить температуру стенки, что позволяет при достаточно интенсивном нагревании снизить местные перегревы на поверхности стенки и тем самым улучшить цвет и другие свойства продукта.

2) Можно особо точно регулировать и поддерживать необходимый режим нагрева, температуру стенки или разность температур между реакционной массой и стенкой.

3) Исключается загрязнение атмосферы цеха имеющими запах или токсичными газами (такое загрязнение возможно при использовании высокотемпературных органических теплоносителей).

4) Отпадает необходимость строительства и эксплуатации котельной, неизбежной при обогреве высокотемпературными органическими теплоносителями.

5) Исключаются сложные коммуникации, запорная арматура и насосы, необходимые при обогреве высокотемпературными органическими теплоносителями.

6) Улучшаются условия труда и качество продукции.

Однако индукционный обогрев связан с расходом сравнительно дорогой электроэнергии, строительством мощной трансформаторной подстанции и прокладкой соответствующей силовой электросети.

В процессе получения пленкообразующих веществ возникает необходимость растворения синтезированных расплавов смол. Для этой цели используются смесители – емкостные аппараты, снабженные мешалкой, рубашкой для нагрева или охлаждения, а также вертикальным обратным холодильником.

Объем смесителя примерно в два раза больше объема реактора. Смесители бывают двух типов – горизонтальные и вертикальные. Выбор того или иного типа определяется объемом смесителя – если объем не превышает 16 м3, то применяется смеситель любого типа, если объем превышает 16 м3, то устанавливаются только горизонтальные смесители.

Полученные в результате растворения пленкообразующих веществ в органических растворителях лаки могут содержать:

1) Нерастворимые в лаке вещества, находившиеся в исходных материалах или образовавшиеся при синтезе пленкообразующего вещества, вплоть до размеров коллоидных частиц (менее 0.1 мкм).

2) Растворимые в лаке исходные материалы или побочные продукты реакции синтеза пленкообразующего вещества, обладающие повышенной химической активностью, приводящей к образованию нерастворимых в лаке в случае длительной выдержки лака при обычной температуре.

Освобождение лака от этих примесей называют фильтрованием (осветлением).

Алкидные лаки относятся к лакам требующим вызревания. Эти лаки отличаются тем, что после их центрифугирования или фильтрования, осуществляемого сразу после растворения синтезированного продукта, при длительном хранении (более 15-20 суток) в прозрачном лаке образуется осадок вследствие содержания в нем реакционноспособных веществ и в результате коагуляции коллоидных частиц.

Содержание в лаке частиц нерастворимых веществ (осадка и взвеси коллоидных частиц) и реакционноспособных веществ резко ухудшает качество покрытий.

При выдержке лаков, требующих вызревания, агрегация коллоидных частиц и образование нерастворимых продуктов протекают сначала быстро, а потом медленно. Ранее для полного завершения этих процессов лаки подвергали многонедельной выдержке (вызреванию). В настоящее время полагают возможным ограничить время выдержки десятью сутками, а остающиеся реакциооноспособные вещества, приводящие к образованию осадка, и коллоидные частицы удалять адсорбцией. Она может быть проведена с помощью порошкообразных и мелковолокнистых веществ – перлита, микроасбеста, диатомита и других веществ.

При отстаивании нерастворимых частиц в приемниках осадок имеет высокое содержание лака. Поэтому иногда лаки, требующие вызревания, предварительно пропускают через трубчатую центрифугу, на которой получают осадок с невысоким содержанием лака.

В настоящее время на заводе применяется ступенчатая очистка лака. После вызревания лак пропускается через трубчатую центрифугу для удаления частиц, имеющих плотность, большую плотности лака, затем лак пропускается через патронный фильтр.

В данном дипломном проекте предлагается также двух ступенчатая очистка лака. Первая ступень – трубчатая центрифуга с высоким фактором разделения (более 10000), позволяющая получать осадок с содержанием жидкой фазы не более 35 процентов.

Основные достоинства трубчатых центрифуг:

1) Низкое содержание лака в осадке.

2) Отсутствие необходимости во вспомогательных материалах или сменных фильтрующих элементах.

Главные недостатки:

1) Необходимость ручной очистки ротора

2) Сравнительно сложная конструкция.

Для тонкой очистки лака взамен патронных фильтров будут применены мешочные фильтры фирмы «HAYWARD». Они обеспечивают степень очистки в диапазоне от 0.1 до 1200 мкм и производительность от 0.1 до 1000 м3/час.

В качестве материала для фильтров используются различные волокна с высокой химической и термической устойчивостью: полиэстер, полипропилен, нейлон, NOMEX (ароматический полиамид), шерсть, фтористые полимеры и другие.

Максимальное рабочее давление может достигать 25 атмосфер, фильтрация может проводиться при температуре до 250оС.

Достоинства мешочных фильтров фирмы «HAYWARD»:

1) Обладают высокой эффективностью фильтрации.

2) Большая площадь фильтровальной поверхности.

3) Большой срок службы.

4) Высокая способность задерживать масло, мягкие гелеобразные частицы.

5) Способность накапливать в себе до 10 кг загрязняющих веществ.

6) Возможность сочетать фильтрование с адсорбцией.

Системы мешочных фильтров фирмы «HAYWARD» превосходят промышленные патронные (картриджные) системы по интенсивности потока, сроку службы, простоте обслуживания и стоимости. Один стандартный мешок размера 01 (18×43 см) может заменить от 5 до 10 десятидюймовых фильтрующих патронов, при этом экономия затрат составит более 60 процентов.

Семь типоразмеров фильтрующих мешков, а также большое разнообразие корпусов, рассчитанных на использование от 1 до 24 мешков, позволяют подобрать оптимальную систему фильтрации для производства лака.

4 Описание технологического процесса

4.1 Рецептура лака ПФ-060