Смекни!
smekni.com

Экологические основы устойчивости растений (стр. 9 из 14)

(А) продукт (Б) (В)

Г

В данной схеме реакции II и III конкурируют за общий проме­жуточный продукт Б. Допустим, что реакция III имеет более высокий температурный коэффициент, чем реакции I и II. Это означает, что высокая температура благо­приятствует реакции III и больше Б будет участвовать в этой реакции, поэтому будет образовываться мало В. Однако, когда температура заметно снизится, больше снизится и скорость ре­акции III, чем реакции II (поскольку, по определению, реак­ция III более чувствительна к изменению температуры). Следо­вательно, понижение температуры благоприятствует реакции II, в результате чего будет накапливаться конечный продукт В, т. е. В будет накапливаться при низких, а не при высоких тем­пературах. Таким образом, процесс суммарного образования В имеет, по-видимому, «отрицательный температурный коэффи­циент», хотя каждая из трех включенных реакций имеет поло­жительный температурный коэффициент. Прямых данных, под­тверждающих эту гипотезу, нет, но ценность ее заключается В том, что она показывает, как общий процесс может протекать быстрее при более низкой температуре без нарушения естест­венных законов химических реакций.

Мы уже видели, что яровизация связана с относительно ста­бильными изменениями, так что, коль скоро меристематическая ткань достигла состояния полной яровизации, она передает это состояние образующимся новым клеткам без «разбавления».

Это заключение в свою очередь наводит на мысль, что состоя­ние яровизации передается через некоторые самореплицирую-щисся цитоплазматические органеллы, но в равной степени также возможно, что в процессе яровизации происходит акти­вация определенных генов, и происшедшее изменение передается по дочерним ядрам во время деления.

ЖАРОУСТОЙЧИВОСТЬ РАСТЕНИЙ

Жароустойчивость (жаровыносливость) — способность расте­ний переносить действие высоких температур, перегрев. Это ге­нетически обусловленный признак. Виды и сорта сельскохозяй­ственных растений различаются по выносливости к высоким температурам.

По жароустойчивости выделяют три группы растений.

Жаростойкие — термофильные синезеленые водоросли и бак­терии горячих минеральных источников, способные переносить повышение температуры до 75—100 °С. Жароустойчивость тер­мофильных микроорганизмов определяется высоким уровнем метаболизма, повышенным содержанием РНК в клетках, устой­чивостью белка цитоплазмы к тепловой коагуляции.

Жаровыносливые — растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толс-тянковые), выдерживающие нагревание солнечными лучами до 50—65 "С. Жароустойчивость суккулентов во многом определяет­ся повышенными вязкостью цитоплазмы и содержанием связан­ной воды в клетках, пониженным обменом веществ.

Нежаростойкие — мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40—47 "С, затененных мест — около 40—42 °С, водные растения выдерживают повышение температуры до 38—42 °С. Из сельско­хозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).

Многие мезофиты переносят высокую температуру воздуха и избегают перегрева благодаря интенсивной транспирации, сни­жающей температуру листьев. Более жаростойкие мезофиты от-

личаются повышенной вязкостью цитоплазмы и усиленным син­тезом жаростойких белков-ферментов.

Изменения обмена веществ, роста и развития растений при действии максимальных температур.

Жароустойчивость во многом зависит от продолжительности действия высоких темпе­ратур и их абсолютного значения. Большинство сельскохозяйст­венных растений начинает страдать при повышении температуры до 35—40 °С. При этих и более высоких температурах нормаль­ные физиологические функции растения угнетаются, а при тем­пературе около 50 °С происходят свертывание протоплазмы и отмирание клеток.

Превышение оптимального температурного уровня приводит к частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и дру­гих клеточных мембран, приводит к потере осмотических свойств клетки. В результате наблюдаются дезорганизация мно­гих функций клеток, снижение скорости различных физиологи­ческих процессов. Так, при температуре 20 °С все клетки прохо­дят процесс митотического деления, при 38 °С митоз отмечается в каждой седьмой клетке, а повышение температуры до 42 °С снижает число делящихся клеток в 500 раз (одна делящаяся клетка на 513 неделящихся).

Иллюстрацией влияния повышения температуры на белково-липидные комплексы могут служить следующие данные: при температуре 22 °С лизис ядер не наблюдается совсем, при по­вышении температуры до 38 °С он отмечается у 5,3 % исследо­ванных клеток, а при температуре 52 °С практически все ядра лизированы. При максимальных температурах расход органичес­ких веществ на дыхание превышает его синтез, растение беднеет углеводами, а затем начинает голодать (Н. А. Максимов, 1952). Особенно резко это выражено у растений более умеренного кли­мата (пшеница, картофель, многие огородные культуры). Общее ослабление повышает их восприимчивость к грибным заболева­ниям. Фотосинтез более чувствителен к действию высоких тем­ператур, чем дыхание. При субоптимальных температурах расте­ния прекращают рост и фотоассимиляцию, что обусловлено нарушением деятельности ферментов, повышением дыхательного газообмена, снижением его энергетической эффективности, уси­лением гидролиза полимеров, в частности белка, отравлением протоплазмы вредными для растения продуктами распада (амми­ак и др.). У жаростойких растений в этих условиях увеличивается содержание органических кислот, связывающих избыточный ам­миак.

При действии высоких температур в клетках растений инду­цируется синтез стрессовых белков (белков теплового шока). Растения сухих, светлых мест обитания более стойки к жаре, чем тенелюбивые. Кратковременное влияние очень высоких темпера-

тур (43—45 °С) может быть таким же губительным, как и продол­жительное воздействие более низких, но превышающих опти­мальные значения температур. Способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощ­ной корневой системой.

В результате транспирации температура растений снижается иногда на 10—15 °С. Завядающие растения, с закрытыми устьи­цами, легче погибают от перегрева, чем достаточно снабженные водой. Растения сухую жару переносят легче, чем влажную, так как во время жары при высокой влажности воздуха регуляция температуры листьев за счет транспирации ограничена.

Повышение температуры особенно опасно при сильной инсо­ляции. Для уменьшения интенсивности воздействия солнечного света растения располагают листья вертикально, параллельно его лучам (эректоидно). При этом хлоропласты активно перемеща­ются в клетках мезофилла листа, как бы уходя от избыточной инсоляции. Растения выработали систему морфологических и физиологических приспособлений, защищающих их от тепловых повреждений: светлую окраску поверхности, отражающую инсо­ляцию; складывание и скручивание листьев; опушения или че­шуйки, защищающие от перегрева глубжележащие ткани; тонкие слои пробковой ткани, предохраняющие флоэму и камбий; большую толщину кутикулярного слоя; высокое содержание уг­леводов и малое — воды в цитоплазме и др.

В полевых условиях особенно губительно совместное действие высоких температур и обезвоживания. При длительном и глубо­ком завядании угнетаются не только фотосинтез, но и дыхание, что вызывает нарушение всех основных физиологических функ­ций растения. Жароустойчивость в значительной степени опре­деляется фазой роста и развития растений. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее ус­тойчивы, чем старые и «покоящиеся». Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более — побеги и почки.

На тепловой стресс растения очень быстро реагируют индук­тивной адаптацией. К воздействию высоких температур они могут подготовиться за несколько часов. Так, в жаркие дни устойчивость растений к высоким температурам после полудня выше, чем утром. Обычно эта устойчивость временная, она не закрепляется и довольно быстро исчезает, если становится про­хладно. Обратимость теплового воздействия может составлять от нескольких часов до 20 дней. В период образования генератив­ных органов жаростойкость однолетних и двулетних растений снижается.

Вредное действие повышенных температур — одна из важней­ших причин значительного снижения урожаев ранних яровых

при запаздывании с их посевом. Например, у пшеницы в фазе кушения в конусе нарастания идет дифференциация колосков. Высокая температура почвы и воздуха приводит к повреждению конуса нарастания, ускоряет процесс и сокращает время прохож­дения IV—V этапов, в результате уменьшается число колосков в колосе, а также число цветков в колоске, что приводит к сниже­нию урожая.

При совместном действии жары и сухости почвы, что харак­терно для районов Юго-Востока, в этот период в зачаточном колосе оказываются поврежденными все закладывающиеся цвет­ки, в результате после колошения колос очень быстро засыхает и белеет — явление пустоколосицы или белоколосицы. Для многих растений жара особенно опасна в период цветения, так как вызывает стерильность цветков и опадение завязей. Так, дейст­вие высокой температуры и низкой влажности в период, когда в пыльниках пшеницы образуется пыльца, а затем идет процесс оплодотворения, приводит к череззернице (не полностью озер-ненному колосу) и пустоколосью. Высокая температура в период молочной зрелости яровой пшеницы вызывает щуплость зерна — «запал».