Смекни!
smekni.com

Биология с основами экологии Пехов (стр. 100 из 152)

Степень генетических различий между видами определяют либо прямо путем изменений последовательностей нуклеотидов в генах, либо косвенно путем изменений последовательностей нуклеотидов в рРНК, или последовательностей аминокислот в белках. Результаты сравнения последовательностей ДНК разных организмов позволяют определить количество пар нуклеотидов, в которых в ходе эволюции имели место замены азотистых оснований (табл. 33), тогда как сравнение белков от разных организмов позволяет определить различия в аминокислотных последовательностях, т. е. судить о близости организмов (рис. 165) и о связи последовательностей со скоростью эволюции (табл. 34, рис. 166). На основе данных о филогении отдельных белков строят филогенетическое древо, которое, как показано для цитохрома С, совпадает с филогенетическим древом, построенным по ископаемым останкам. На основе реконструкции филогении и определения степени генетических различий по аминокислотным последовательностям ряда белков считают, что гены, кодирующие эти белки у животных, происходят от общего предка.

Таблица 33

Количества нуклеотидных замен в генах, кодирующих

цитохромы С у разных организмов

Организм 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20
1. Человек 1 13 17 16 13 12 12 17 16 18 18 19 20 31 33 36 63 56 66
2. Макак -резус 12 16 IS 12 11 13 16 15 17 17 18 21 32 32 35 62 57 65
3. Собака 10 8 4 6 7 12 12 14 14 13 30 29 24 28 64 61 66
4. Лошадь 1 5 11 11 16 16 16 17 16 32 27 24 33 64 60 68
5. Осел 4 10 12 15 15 15 16 15 31 26 25 32 64 59 67
6. Свинья 6 7 13 13 13 14 13 30 25 26 31 64 59 67
7. Кролик 7 10 8 11 11 11 25 26 23 29 62 59 67
8. Кенгуру - 14 14 15 13 14 30 27 26 31 66 58 68
9. Утка 3 3 3 7 24 26 26 29 81 62 66
10. Голубь 4 4 8 24 27 26 30 89 62 66
11. Курица 2 8 28 26 28 31 61 62 66
12. Пингвин 8 28 27 28 30 62 61 65
13. Черепаха 30 27 30 33 65 64 67
14.Гремучая змея 38 40 41 61 61 69
15. Тунец 34 41 72 66 69
16.Муха комнатная 16 88 63 65

С целью определения степени сходства белков используют также иммунологическое и электрофоретическое сравнение белков. Степень иммунологического сходства белков выражают в иммуно-логическом расстоянии (табл. 35), которое приближенно можно связать с различиями по аминокислотным последовательностям. Электрофоретические исследования позволяют выявить электрофоретическое сходство белков и на основе этих данных также определить генетические расстояния между видами.

Таблица 34

Связь между аминокислотными различиями в и-и р-глобинах со скоростью эволюционной дивергенции

Животные a-цепь b-цепь a+b (среднее) Миллионы лет с начала дивергенции
Плацентарные в сравнении между собой 16,1 16,7 16,4 100
Кенгуру в сравнении с плацентарными млекопитающими 21,7 26,9 24,3 160
Куры в сравнении с млекопитающими (сумчатыми и плацентарными) 29,6 31,7 30,6 215
Змеи в сравнении с теплокровными 39,2 290
Земноводные в сравнении с наземными животными 46,7 48,9 47,8 380
Костные рыбы в сравнении с четвероногими (рептилиями, амфибиями и млекопитающими) 49,3 49,6 49,5 400

Таблица 35

Иммунологические различия между приматами (по альбуминам)

Вид приматов Антисыворотка в альбуминам
Человека Шимпанзе Гиббона
Человек о 3,7 14,4
Шимпанзе 5,7 0 14,6
Горилла 3,7 6,8 11,7
Орангутан 8,6 9,3 11,7
Гиббон 10,7 9,7 0

Эволюция подтверждается данными сравнительной морфологии, эмбриологии, физиологии, биохимии и генетики.

Результаты сравнительного изучения строения животных в пределах систематических групп показывают, что оно имеет общий план (рис. 167). Особенно это проявляется в случае гомологичных органов, которые характеризуются общим строением, сходством эмбрионального развития, иннервации, кровоснабжения и отношения к другим органам. Например, гомологичными являются передний ласт тюленя, крыло летучей мыши, передняя нога собаки и рука человека (рис. 168) и другие. Эти органы состоят из почти одинакового количества костей и мышц, их сосуды и нервы имеют сходную топографию. Гомологичные органы с несомненностью указывают на общность происхождения животных, у которых есть эти органы.

Помимо гомологичных органов морфологическим свидетельством в пользу эволюции являются данные о рудиментарных органах, являющихся «остатками» развитых органов, имевшихся в прошлом у предковой формы. Например, у человека имеется свыше 100 разных рудиментов, типичными примерами которых являются червеобразный отросток слепой кишки (аппендикс), копчик (слившиеся хвостовые позвонки), волосяной покров туловища и конечностей, третье веко. Червеобразный отросток слепой кишки является результатом перехода человека на диету с большим содержанием мяса и меньшим количеством клетчатки. Слепой вырост в таких условиях уменьшился и стал рудиментом. Напротив, у травоядных животных он представляет собой активно функционирующий орган. Кости задних конечностей китов в связи с переходом их к водному образу жизни стали рудиментами, располагающимися в толще брюшных мышц.

На эмбриологические доказательства эволюции обращал внимание еще Ч. Дарвин. В 1866 г. Э. Геккель сформулировал биогенетический закон, в соответствии с которым онтогенез есть повторение филогенеза (краткое и быстрое резюме филогенеза по терминологии Э. Геккеля), т. е. зародыши в процессе развития как бы сокращенно повторяют эволюционный путь своих предков. Как оказалось позднее, Э. Геккель был прав в принципе, но не в деталях, поскольку зародыши высших животных сходны лишь с зародышами низших животных, но не со взрослыми особями низших форм, как это считал Э. Геккель.

Эмбриологические данные в пользу эволюции сводятся к тому, что на ранних стадиях развития между зародышами млекопитающих, рыб, земноводных и пресмыкающихся существует много сходных признаков. В то же время эти организмы обладают рядом собственных признаков, присущих только им и обеспечивающих приспособленность к развитию в утробе материнского организма, но не под скорлупой яйца.

Данные эмбриологии свидетельствуют о том, что после гаструляции развитие зародышей проходит в одном из двух направлений. С одной стороны, бластопор превращается либо в анальное отверстие, либо занимает положение около этого отверстия, как это имеет место в случае иглокожих и хордовых. С другой стороны, бластопор развивается в ротовое отверстие, либо занимает положение около этого отверстия, как это имеет место в случае кольчатых червей, моллюсков, членистоногих и др. При развитии как в одном направлении, так и другом между эктодермой и энтодермой развивается мезодерма, которая у иглокожих и позвоночных закладывается частично (карманами или выпячиваниями первичной кишки), а у кольчатых червей и других организмов закладывается из специальных клеток, дифференцирующихся на ранних этапах развития.

Вслед за появлением мезодермы у всех хордовых развивается дорзальный полый нервный тяж, а также нотохорд (основа скелета тела) и жаберные щели (отверстия в глотке). На ранних стадиях развития у зародышей, например человека, как и у зародышей рыб, имеются жаберные щели, дуги аорты, пересекающие жаберные перегородки, сердце с одним предсердием и одним желудочком, примитивная почка (пронефрос) и хвост с мышцами. Таким образом, на ранних стадиях развития зародыши человека напоминают зародыши рыб.