В геноме человека найдена последовательность Alu длиной порядка 300 пар оснований и повторяющаяся в 100 000-300 000 копиях на гаплоидный набор хромосом, что составляет около 5% генома человека. Alu-последовательности сходны с прямыми копиями ДНК на молекулах мРНК, ибо они содержат «отрезок» по-лидезоксиаденозина на их 3'-концах, а сходство Alu-последователь-ностей с транспозонами определяется тем, что они фланкированы прямыми повторами 7-20 пар оснований.
В геноме человека открыты тандемно расположенные повторяющиеся последовательности Hinf, составленные из субъединиц длиной 172 и 147 пар оснований, а также транспозоны .Mariner, тоже представленные повторами оснований. Транспозоны Mariner обнаружены, кроме того, в геномах дрозофилы, отдельных членистоногих, нематод и планарий.
Биологическое значение транспозонов заключается, прежде всего, в том, что они являются мутагенами (см. § 47).
Все, что известно в настоящее время о репликации ДНК, выяснено в результате многолетнего экспериментального обоснования основных положений модели структуры и репликации ДНК по Д. Уотсону и Ф. Крику.
Формулируя свою модель, Д. Уотсон и Ф. Крик предположили, что репликация ДНК происходит в несколько последовательных этапов, а именно: а) разрыв водородных связей между двумя полинуклеотидными цепями и разделение последних; б) разматывание по-линуклеотидных цепей; в) синтез вдоль каждой из полинуклеотидных цепей новой цепи с комплементарной последовательностью азотистых оснований (рис. 110), Они предположили далее, что разделение и разматывание полинуклеотидных цепей начинается с одного конца молекулы, продолжается по направлению к другому ее концу и сопровождается одновременно идущим с того же конца молекулы синтезом новых полинуклеотидных цепей. Таким образом, в репликации ДНК каждая полинуклеотидная цепь действует в качестве шаблона для вновь синтезируемой полинуклеотидной цепи, причем шаблон обеспечивает выбор определенных нуклеотидных последовательностей из всех возможных последовательностей. В результате этого каждая новая молекула ДНК состоит из одной старой цепи и одной новой (дочерней), комплементарной старой. Этот способ репликации ДНК получил название полуконсервативной репликации.
Полуконсервативный характер репликации ДНК был доказан М. Месельсоном и Ф. Сталем в 1958 г. в экспериментах, выполненных на Е. coli. Выращивая бактерии в течение первых делений в синтетической среде, содержащей в качестве источника азота 15N («тяжелый» изотоп), а затем с среде с 14С («легким» изотопом), они показали, что ДНК бактерий после одной генерации роста имела «гибридную» плотность (15N/14C), а после двух генерации по плотности наполовину была «гибридной», наполовину «легкой» (14С), т.е. состояла из «тяжелых» и «легких» полинуклеотидных цепей.
У прокариотов репликация ДНК начинается с 0-пункта репликации, составленного примерно 300 нуклеотидами, и продолжается в двух направлениях, образуя репликацион-ную «вилку» (рис.111). Скорость движения «вилки», т. е. скорость полимеризации составляет 500 нук-леотидов в секунду. Удвоение молекулы ДНК происходит за 40 минут. Кроме того, у прокариотов действует механизм «вращающееся кольцо», по которому репликационная вилка двигается вокруг кольца, генерируя цепи, на которых синтезируются комплементарные цепи (рис. 112).Изучение ферментативного синтеза ДНК in vitro, компонентами которого являются ДНК-полимераза, дезоксирибонуклеозид 5'-трифосфаты всех четырех азотистых оснований, ионы магния и ДНК-«затравка»,
показало, что присутствие всех этих компонентов в смеси сопровождается добавлением мононуклеотидов к растущему концу цепи ДНК, причем они добавляются к 3'-гидроксильному концу «затравочной» последовательности, и цепь растет в направлении от 5'- к 3'-концу (рис. 113). Реакция катализируется ДНК-полимеразой III. После добавления в смесь ДНК-«затравки» синтез ДНК не прекращается даже тогда, когда количество вновь синтезированной ДНК достигает количества ДНК-«затравки». Если же один из компонентов в смеси отсутствует, частота полимеризации снижается во много раз. Отсутствие ДНК-«затравки» полностью исключает реакцию.
Установлено, что для репликации ДНК Е. coli in vitro необходимы белки, детерминируемые генами dna A, dna В, dna С, dna G, ДНК-гираза, а также белок, связывающийся с одиночными цепями ДНК и АТФ. Комплекс репликативных ферментов и белков получил название ДНК-репликазной системы (реплисомы).
Изучение ферментативного синтеза ДНК in vitro показало также, что копируются обе цепи, но т. к. цепи ДНК в спирали антипараллельны, то синтез (полимеризация) одной цепи происходит в направлении от 5' к 3'-концу, тогда как другой — от 3' к 5'-концу. Синтез цепи в направлении от 5'- к 3'-концу является непрерывным, тогда как синтез в направлении от 3'- к 5'— прерывен, поскольку синтезируются короткие сегменты в направлении от 5' к 3'-концу, которые затем воссоединяются ДНК-лигазой. Короткие сегменты по 1000-2000 нуклеотидов получили название фрагментов Р. Оказаки (рис. 114). Следовательно, рост обеих цепей обеспечивается одной и той же полимеразой. Репликационная вилка асимметрична. Цепь, синтезируемую непрерывно, называют лидирующей, тогда как цепь, синтезируемую прерывно, называют «запаздывающей». «Запаздывание» второй цепи связано с тем, что синтез каждого фрагмента Оказаки осуществляется только тогда, когда в результате продвижения лидирующей цепи откроется необходимый участок цепи-шаблона.У бактерий открыты ДНК-поли-меразы I, II, III. Главной является ДНК-полимераза III, которая отвечает за элонгацию цепей ДНК. Что касается данных ферментов, то ДНК-полимераза I заполняет бреши в запаздывающей цепи, тогда как функция ДНК-полимеразы II не совсем понятна.
В случае синтеза лидирующей цепи у ДНК-полимеразы имеется спаренный 3'-конец, что позволяет начать полимеризацию следующей (новой) цепи. Однако для ДНК полимеразы, синтезирующей «запаздывающую» цепь, необходима «затравка», обладающая спаренным 3'-концом (3'-гид-роксильной группой). Эту затравку в виде коротких сегментов РНК синтезирует из рибонуклеотидтрифосфа-тов ДНК-примаза на ДНК-шаблоне запаздывающей цепи. Данный процесс характерен тем, что предшествующий синтез коротких сегментов
РНК «затравливает» каждую новую инициацию синтеза ДНК. Затем включается ДНК-полимераза, полимеризуя 5'-фосфатдезокси-рибонуклеотидного остатка с 3'-гидроксильным концом цепи РНК, что приводит к нормальному синтезу цепи ДНК. В последующем «затравочная» последовательность РНК удаляется, и брешь заполняется ДНК. Таким образом, роль «затравки» в синтезе фрагментов Оказаки выполняет РНК.
Репликация ДНК эукариотов характеризуется теми же механизмами, что и у прокариотов, хотя скорость полимеризации цепей является меньшей (около 50 нуклеотидов в секунду у млекопитающих). В репликации ДНК эукариотов принимают участие те же ферменты, что и в случае прокариотов. Размеры фрагментов Оказаки здесь составляют 100-200 нуклеотидов.
Раскручивание двойной цепи ДНК происходит с участием трех разных белков, а именно: а) белки, дестабилизирующие спираль (SS В-белки). Они связываются с одноцепочечными ДНК, помогают
ДНК-геликазам раскручивать спираль и обеспечивают протяженный одноцепочечный шаблон для полимеризации; б) ДНК-гелика-зы, раскручивающие ДНК. Они прямо вовлечены в катализирова-ние раскручивания; в) ДНК-гиразы, которые катализируют формирование негативных супервитков в ДНК.
У эукариотов известно пять ДНК-полимераз (a, b, g, d и e), из которых главную роль в репликации играют полимеразы a и d.
a—Полимераза начинает синтез на ведущей (лидирующей) и запаздывающей цепях, поскольку только она обладает «затравочной» активностью. Дальнейшую элонгацию лидирующей цепи осуществляет b-фермент, а «запаздывающей» цепи —e - или d-ферменты. g-фермент, который является митохондриальным, завершает репликацию «запаздывающей» цепи, играя при этом роль, присущую в бактериях ферменту роl I.
Установлен также белок (циклин), который синтезируется в S-фазе клеточного цикла и который также необходим для репликации ДНК.
Спирализацию ДНК после репликации обеслечивают ферменты ДНК-топоизомеразы. Процесс репликации ДНК характеризуется исключительной точностью. Как отмечено выше, фрагменты Оказа-ки, продуцируемые в ДНК у эукариот, имеют длину от 100 до 20 пар нуклеотидов. Это, возможно, связано с тем, что у эукариотов синтез ДНК является более медленным (1 молекула ДНК в минуту) по сравнению с прокариотами (30 молекул ДНК в минуту).
Удвоение хромосом эукариотов является сложным процессом, поскольку включает не только репликацию гигантских молекул ДНК, но также и синтез связанных с ДНК гистонов и негистоно-вых хромосомных белков. Конечным этапом является упаковка ДНК и гистонов в нуклеосомы. Считают, что удвоение хромосом также имеет полуконсервативный характер.
Репликационное поведение хромосом основывается на трех фундаментальных свойствах, а именно: непосредственно репликация, сегрегация хромосом при репликации ДНК и делении клеток, а также репликация и предохранение концов хромосом. 0-пункты репликации существуют в хромосомах (сайты инициации репликации) также организмов-эукариотов, состоящих из определенных последовательностей азотистых оснований, причем являются множественными. Эти пункты получили название автономно реплици-рующихся последовательностей (ars-элементов). Определяя количество репликационных вилок, они удалены один от другого на расстоянии 30 000-300 000 пар азотистых оснований. В результате этого по каждой хромосоме двигается много репликационных «вилок», причем одновременно и независимо одна от другой. Инициацию репликации ДНК обеспечивают белки, связанные с 0-пун-ктом репликации, а также белки — киназы. Последние ответственны за выход ДНК из репликации. Но как действуют эти механизмы — это вопрос, который еще не получил разрешения.