Многие химические мутагены нарушают мейоз, что приводит к нерасхождению хромосом, а также вызывают разрывы хромосом и генные мутации. Например, трипофлавин действует на все стадии развития половых клеток, нитрозогуанидин — перед мейозом, а тренинон — после мейоза.
Некоторые из химических немутагенных соединений становятся мутагенами, попав в организм, как например, циклофос4эамид.
Заслуживают внимания химические вещества, используемые в качестве лекарственных соединений. Так после лечения алкилирующими соединениями необходимо избегать зачатия в первые три месяца. Известны сведения о мутагенности оральных (применяемых внутрь) химических контрацептивов, которые получили очень большое распространение в последние десятилетия, а также некоторых соединений, входящих в косметические средства и в консерванты продуктов питания.
Биологическими мутагенами являются вирусы, которые вызывают хромосомные аберрации в культивируемых клетках. Такой способностью обладает, например, вирус гриппа. Транспозируемые генетические элементы также способны вызывать генные и хромосомные мутации.
В экспериментальной работе используют разные способы получения сайтонаправленных индуцированных мутаций, т. е. мутаций, затрагивающих интересующие исследователя участки ДНК. В частности, широко используют мутагенез in vitro клонируемой ДНК, для этого последнюю обрабатывают нуклеазами (рестриктазами) или химическими мутагенами. Кроме того, известны методы мута-генеза химически синтезируемой ДНК. Наконец, возможно получение в стволовых эмбриональных клетках экспериментальных животных хромосомных аберраций генноинженерным методом.
Механизмы полиплоидии заключаются в том, что они являются результатом извращений одного или более митотических делений клеток зародыша или результатом нерасхождения в период мейоза всего набора хромосом, ведущего к образованию диплоидных гамет. Нерасхождение хромосом у женщин имеет место в 80% случаев, а у мужчин оно наблюдается в 20% случаев, причем оно отмечается как в первом, так и во втором мейотических делениях.
Механизмы гетероплоидии также связаны с нерасхождением хромосом. В частности установлено, что, например, у человека три-сомии обеспечиваются нерасхождением хромосом как в первом, так и во втором мейотическом делении.
Механизмы хромосомных аберраций не совсем ясны. В любом случае они связаны с разрывами хромосом, как у растений, так и у животных, что ведет к изменению последовательности хромосомных генов.
Молекулярные механизмы генных мутаций заключаются в изменениях последовательности азотистых оснований в молекулах ДНК. Эти изменения происходят в результате замен, делеций (выпадений), включений и дупликаций оснований, что ведет к изменению содержания кодонов.
Изменения, связанные с заменой оснований в молекулах ДНК, классифицируют на простые и перекрестные замены (табл. 14).
Простые замены, или транзиции, заключаются в замене одного пурина на другой пурин, и наоборот, в двухцепочечной молекуле ДНК — пары А-Т на пару Г-Ц, и наоборот. Транзиции осуществляются в процессе репликации ДНК без изменения ориентации пар пурин-пиримидин в двухцепочечной молекуле ДНК, но при этом происходят изменения в содержании кедонов.
Перекрестные замены, или трансверсии, связаны с заменой в ДНК пурина на пиримидин, и наоборот. Замещающий пиримидин спаривается с пурином, так что в двухцепочечной молекуле ДНК вместо пары пурин-пиримидин оказывается пара пиримидин-пурин. Следовательно, трансверсии приводят к новым ориентациям пар пурин—пиримидин и заключаются в замене в двухцепочечной молекуле ДНК пары А-Т на пару Ц-Г, и наоборот, пары А-Т на пару Т-А, и наоборот, пары Т-А на пару Г-Ц, и наоборот, а также пары Г-Ц на пару Ц-Г, и наоборот.
Таблица 14
Типы замен оснований в молекулах ДНК
Исходное основание | Основание, занявшее место исходного | Тип замены |
Пурин | Другой пурин | Простая замена (транзиция) |
Пиримидин | Другой пиримидин | То же |
Пурин | Любой пиримидин | Перекрестная замена (трансверсия) |
Пиримидин | Любой пурин | Перекрестная замена (трансверсия) |
Спонтанные замены азотистых оснований происходят очень редко. Например, в соответствии с существующими расчетами у человека за год случается около 10—20 спонтанных замен оснований, причем одна замена может быть повторена на каждые 10 000 генов лишь 50 раз на протяжении времени в 1 млн лет. Можно полагать, что такая чрезвычайно низкая частота замен оснований в ДНК присуща как животным (млекопитающим), так и растениям. Спонтанные замены азотистых оснований возникают в ДНК в результате «ошибок», совершаемых ДНК-полимеразой и сопровождающихся неправильным спариванием оснований. Одно из объяснений этой «ошибочности» было дано Д. Уотсоном и Ф. Криком еще в 1953 г. и оно сводится к признанию в ошибочном спаривании роли тауто-мерных форм (структур, в которых протон перешел на место, противоположное обычной водородной связи) естественных оснований. Следовательно, структурные основы для мутаций в виде замен оснований обеспечивают таутомеры естественных оснований.
Транзиции индуцируются азотистой кислотой, которая вызывает окислительное дезаминирование аденина, цитозина и гуанина, содержащих свободные аминогруппы, в гипоксантин, урацил и ксантин соответственно. Из-за того, что дезаминирование сопровождается переходом аминооснования в кетонооснование, гипоксантин, например, подобно гуанину, будет спариваться с цитози-ном, т. е. в результате дезаминирования аденина в гипоксантин пара А-Т перейдет в пару Г-Ц. В случае дезаминирования цитозина в урацил пара Г-Ц перейдет в пару А-Т. Транзиции индуцируются также алкилирующими соединениями. Например, этилметан-сульфонат алкилирует гуанин и освобождает от него ДНК без нарушения ее сахарофосфатного каркаса. Следовательно, гуанин может быть заменен любым основанием, и это ведет не только к транзициям, но и к трансверсиям.Транзиции часто вызываются мутагенами, действующими на ДНК только в состоянии репликации, например, 5-бромурацилом, который является аналогом тимина и способен включаться в ДНК посредством замещения тимина. Наряду с нормальной способностью 5-бромурапила спариваться с аденином иногда возникает состояние, когда он действует не как тимин, а как цитозин, что обеспечивает формирование водородных связей его не с аденином, а с гуанином. Эти «ошибки» спаривания происходят либо при включении 5-бро-мурацила в ДНК («ошибки» включения), либо при репликации ДНК после его включения («ошибки» репликации). Следовательно, время «ошибок» определяет характер транзиции. «Ошибки» спаривания, индуцируемые 5-бромурацилом, ведут к транзициям от пары Г-Ц к паре А-Т, и наоборот (от А-Т к Г-П). Подобные транзиции индуцируются также 2-аминопурином.
Замены оснований приводят к изменениям смысла кодонов, вследствие чего они приобретают способность кодировать другую аминокислоту (миссенс-мутации). Например, замена в триплете ГУА, содержащемся в гене р-гемоглобина, урацила на аденин (трансверсия) сопровождается тем, что в цепи р-гемоглобина вместо валина оказывается глутаминовая кислота. Это ведет к превращению гемоглобина в новый вариант мутантного гемоглобина (например, типа Бристоль). В результате замен оснований возникают также нонсенс-мутации, когда на измененных кодонах обрывается чтение информации гена (как правило, такими кодонами являются триплеты УАГ, УАА и УГА). Одновременно в результате замен образуются кодоны, сохраняющие исходный смысл.
Делеции и включения одного или нескольких азотистых оснований в нуклеотидных последовательностях ДНК могут быть ошибками репликации ДНК или индуцироваться акридиновыми красителями. Такие изменения называют мутациями сдвига рамки, ибо они приводят к сдвигу «рамки чтения» кода гена. Включаясь между соседними основаниями, акридин оранжевый заставляет их «раздвигаться» на расстояние в 0,6-0,8 нм.
Если акридин оранжевый присутствует в полинуклеотидной цепи-шаблоне, то результатом будет добавление основания в новую цепь в процессе репликации ДНК. Если же акридин оранжевый присутствует в клетке во время репликации ДНК, то он может включаться в новую цепь вместо основания, имитируя парное (противоположное) основание в цепи-шаблоне, и затем выйти. Это приводит к тому, что вновь реплицированной цепи будет недоставать основания, т. е. она будет реплицирована с делецией по основанию- Делеции могут затрагивать несколько оснований. Например, описаны делеции 15 оснований, которые сопровождались утратой в белке 5 аминокислот.
Дупликации (добавление) 1—2 оснований могут приводить также к мутациям со сдвигом «рамки считывания» кода. Если дупли-кация происходит внутри гена, то «рамка считывания» нарушается на большом протяжении.
Делеции и дупликации азотистых оснований представляют собой молекулярный механизм и мутации митохондриальной ДНК человека. Установлено, что из мтДНК человека могут быть делегированы сегменты длиной до 5000 пар оснований.
Особую форму молекулярных механизмов генных мутаций представляют повторы триплетов азотистых оснований. Наличие в молекулах ДНК повторов триплетов оснований сопровождается нарушениями нормального цикла репликации ДНК, с одной стороны, и аномальным синтезом белка (из-за повторов аминокислоты, кодируемой повторяющимся триплетом), с другой стороны. Например, мутации гена, контролирующего белок хантингтан, недостаток которого у человека сопровождается болезнью Хантингтона, заключаются в резком увеличении повторов триплета ЦАГ.
Мутагенные и летальные эффекты мутагенов сопровождаются структурными повреждениями, которые они вызывают в молекулах ДНК. Например, в геноме человека непрерывно происходят случайные изменения (повреждения), но сохраняются лишь отдельные из них. Причем очень редко. Так из 1000 замен азотистых оснований лишь одна приводит к мутациям. Причина заключается в том, что эти повреждения часто подвержены восстановлению. Процесс реконструкции повреждений ДНК называют восстановлением или репарацией ДНК.