Смекни!
smekni.com

Методика решения иррациональных уравнений и неравенств в школьном курсе математики (стр. 14 из 21)

Цель курса: исследование возможности изучения дополнительно к учебному плану некоторых типов иррациональных уравнений, углубления уже имеющихся знаний по решению иррациональных уравнений.

Этапы курса:

1. Разработка программы факультативных занятий «Иррациональные уравнения и методы их решения» для учащихся 11 класса.

2. Проведение диагностирующей контрольной работы №1.

3. Проведение разработанной программы факультативных занятий.

4. Проведение диагностирующей контрольной работы №2.

5. Анализ полученных результатов опытной работы.

Этап №1

Разработка программы факультативных занятий «Иррациональные уравнения и методы их решения» для учащихся 11 класса.

Факультативные занятия были разработаны на основе анализа математической, методической и учебной литературы.

Этап №2

Проведение диагностирующей контрольной работы №1.

Контрольная работа была проведена перед проведением факультативных занятий с учениками 11а класса школы №37 города Кирова. Ее основная задача: определить уровень подготовки, знаний и умений по теме «Иррациональные уравнения».

Учащимся было предложено 8 заданий, которые было необходимо выполнить в течение 1 часа. В классе 25 человек. Содержание диагностирующей контрольной работы №1 представлено в приложении Б.

Задания 1-3 –с выбором ответа, задания 4-7 – с кратким ответом, задание 8 – с развернутым ответом.

Результаты диагностирующей контрольной работы №1 отображены в таблице №1:

№ задания

1

2

3

4

5

6

7

8

Кол-во человек, решивших задание

18

17

18

10

7

6

3

0

Доля человек, решивших задание в процентах

72%

68%

72%

40%

28%

24%

12%

0%

Этап №3

Проведение разработанной программы факультативных занятий.

Разработанные задания проводились 2 раза в неделю. Всего было проведено 6 занятий по 2 часа.

Основные задачи проведения факультативных занятий:

1) проверить правильность отбора содержания и системы упражнений;

2) выявить тот материал, который вызывает у учащихся наибольшие затруднения;

3) определить эффективность усвоения материала посредством текущей проверки;

4) выявить заинтересованность учащихся в изучении данной темы.

Этап №4

Проведение диагностирующей контрольной работы №2.

Контрольная работа была проведена после проведения факультативных занятий разработанной программы. Задача: выявление знаний и умений решать иррациональные уравнения.

Учащимся было предложено 8 заданий, которые было необходимо выполнить в течении 1 часа. Содержание диагностирующей контрольной работы №1 представлено в приложении Б.

Тематика заданий та же, что и в контрольной работе №1.

Результаты диагностирующей контрольной работы №2 отображены в таблице №2:

№ задания

1

2

3

4

5

6

7

8

Кол-во человек, решивших задание

24

23

24

17

11

10

5

3

Доля человек, решивших задание в процентах

96%

92%

96%

68%

44%

40%

20%

12%

Этап №5

Анализ полученных результатов опытной работы.


На основании таблиц №1 и №2 можно построить диаграмму, отображающую сравнение результатов контрольных работ, проведенных перед посещением учащимися факультативных занятий и после их посещения.

Как видно из диаграммы, перед проведением факультативных занятий уровень знаний учащихся был средним, а после проведения занятий он повысился. Положительная тенденция заметна: учащиеся научились решать простейшие иррациональные уравнения и справились с заданиями 1-3, значительно лучше стало умение решать более сложные уравнения. Так как 8-ое задание относится к высокому уровню сложности, с ним справилось лишь 3 человека. Учащиеся лучше стали владеть методом введения новых переменных при решении иррациональных уравнений. Трудным показался материал, связанный с рационализирующими подстановками при решении иррациональных уравнений.

Программа факультативных занятий на тему «Иррациональные уравнения и методы их решения»

Ниже предлагается программа факультативных занятий на тему «Иррациональные уравнения и методы их решения». Курс лучше изучать в 11 классе, так как уравнения такого вида содержатся в заданиях ЕГЭ и на вступительных экзаменах в ВУЗы. Программа рассчитана на 16 часов. Занятия проводятся по 2 часа.

Занятие №1

Тема: Равносильные и неравносильные преобразования уравнений.

Цели:

1) Познакомить учащихся с понятием равносильных уравнений.

2) Показать, когда одно уравнение является следствием другого.

3) Сформулировать теоремы о равносильности уравнений.

4) Познакомить учащихся с равносильными и неравносильными преобразованиями уравнений.

Краткое содержание: Определение равносильности уравнений, следствия уравнений, понятие постороннего корня уравнения, перечисление и демонстрация на примерах равносильных и неравносильных преобразований уравнений.

Литература для учителя:

Литература для ученика:

Занятие №2, №3

Тема: Решение простейших иррациональных уравнений

Цели:

1) Отработать у учащихся умение решать простейшие иррациональные уравнения вида

,
.

2) Закрепить изученный ранее материал.

3) Подготовить учащихся к изучению нового материала.

Краткое содержание: Определение иррационального уравнения, решение простейших иррациональных уравнений вида

,
методом возведения обеих частей уравнения в одну и ту же степень с последующей проверкой полученных корней, а также методом сведения к равносильной системе уравнений и неравенств. Метод уединения радикала.

Литература для учителя:

Литература для ученика:

Занятие №4

Тема: Решение иррациональных уравнений методом замены.

Цель: Научить учащихся решать иррациональные уравнения методом замены.

Краткое содержание: Применение метода замены в случае, если в уравнении неоднократно встречается некоторое выражение. Решение иррациональных уравнений методом сведения к эквивалентным системам рациональных уравнений при помощи введения двух вспомогательных неизвестных.

Литература для учителя:

Литература для ученика:

Занятие №5

Тема: Применение рационализирующих подстановок при решении иррациональных уравнений.

Цель: Научить учащихся решать иррациональные уравнения при помощи рационализирующих подстановок.

Краткое содержание: Рассмотрение рационализации некоторых выражений, содержащих радикалы, с помощью рационализирующих подстановок и применение этих подстановок при решении иррациональных уравнений.

Литература для учителя:

Литература для ученика:

Занятие №6

Тема: Решение иррациональных уравнений функционально-графическим методом.

Цель: Научить учащихся решать иррациональные уравнения и неравенства, используя свойства входящих в них функций.

Краткое содержание: Использование ОДЗ, монотонности, графиков функций при решении иррациональных уравнений.

Литература для учителя:

Литература для ученика:

Занятие №7

Тема: Обобщение и систематизация методов решения иррациональных уравнений.

Цель:

1) Показать учащимся, что иррациональные уравнения можно решать не одним методом.

2) Систематизировать методы решения иррациональных уравнений.

3) Научить выбирать наиболее рациональный способ решения.

Краткое содержание: Рассмотрение различных методов решения на примере одного иррационального уравнения вида

.

Литература для учителя:

Литература для ученика:

Занятие №8

Тема: Иррациональные уравнения, содержащие знак модуля или параметр. Решение уравнений смешанного типа.

Цель: Показать учащимся как решаются уравнения смешанного типа и уравнения, содержащие знак модуля и параметр.

Краткое содержание: Решение иррациональных уравнений с параметром и модулем, а также иррациональные уравнения, содержащие логарифмические, показательные или тригонометрические выражения.