Применение методов факторного анализа требует большой подготовительной работы и трудоемких по установлению моделей расчетов. Поэтому без ЭВМ не рекомендуется применять методы корреляционного и регрессионного анализа, главных компонент. К тому же в настоящее время для ЭВМ различных классов имеются стандартные программы по этим методам. В свою очередь пользоваться установленными с помощью ЭВМ моделями очень просто.
На подготовительной стадии факторного анализа большое внимание следует уделять качеству матрицы исходных данных для ЭВМ. С этой целью сначала рекомендуется на основе логического анализа определять группы факторов, влияющих на исследуемую функцию.
К исходным данным предъявляются следующие требования:
а) в объем выборки должны включаться данные только по однородной совокупности объектов анализа, т.е. одного назначения и класса, используемых (изготавливаемых, функционирующих) в аналогичных условиях по характеру и типу производства, режиму работы, географическому району и т.д. В том случае, когда необходимо увеличить размер матрицы, исходные данные отдельных объектов могут быть приведены в сравнимый вид с большинством объектов по отличающимся признакам путем умножения их на корректирующие коэффициенты;
б) период динамического ряда исходных данных должен быть небольшим, но, по возможности, одинаковым для всех объектов. Устойчивый период упреждения (зона прогноза) обычно в два и более раза меньше периода динамического ряда. Например, по данным за 1985-1995гг. можно разработать прогноз до 2000г., а в последующие годы по фактическим данным модель должна обновляться (уточняться);
в) исходные данные должны быть качественно однородными, с небольшими интервалами между собой;
г) следует применять одинаковые методы или источники формирования данных. Если динамический ряд имеет крупные структурные сдвиги (например из-за изменения цен, ассортимента выпускаемой продукции, программы ее выпуска и т.д.), то все данные должны быть приведены в сравнимый вид или одинаковые условия;
д) отдельные исходные данные должны быть независимы от предыдущих и последующих наблюдений. Например, наблюдение не должно определяться расчетным путем по предыдущему наблюдению.
Основные параметры корреляционно-регрессионного анализа в связи с их сложностью не приводятся, поскольку все расчеты предполагается выполнять на ЭВМ по стандартной программе. Конечные результаты расчета выдаются на печать (табл. 4.3).
Таблица 4.3
Основные параметры корреляционно-регрессионного анализа
Название параметра | Обозначение | Что характеризует параметр и для чего применяется | Оптимальное значение параметра |
1 | 2 | 3 | 4 |
1. Объем выборки | m | Количество данных по фактору (размер матрицы по вертикали). Применяется для установления тенденций изменения фактора | Не менее чем в 3-5раз больше количества факторов (nxi) С увеличением количества факторов кратность должна увеличиваться |
2. Коэффициент вариации | Vi | Уровень отклонения значений факторов от средней анализируемой совокупности | Меньше 33 % |
3. Коэффициент парной корреляции | rxy | Тесноту связи между i-м фактором и функцией. Применяется для отбора факторов | Больше 0,1 |
4. Коэффициент частной корреляции | rxx | Тесноту связи между факторами. Применяется для отбора факторов | Чем меньше, тем лучше модель |
5. Коэффициент множественной корреляции | R | Тесноту связи одновременно между всеми факторами и функцией. Применяется для выбора модели | Больше 0,7 |
6. Коэффициент множественной детерминации | D | Долю влияния на функцию включенных в модель факторов. Равен квадрату коэффициента множественной корреляции | Больше 0,5 |
7. Коэффициент асимметрии | А | Степень отклонения фактического распределения случайных наблюдений от нормального по центру распределения. Применяется для проверки нормальности распределения | Метод наименьших квадратов может применяться при А меньше трех |
8. Коэффициент эксцесса | Е | Плосковершинность распределения случайных наблюдений от нормального по цен тру распределения Применяется для проверки нормальности распределения функции | Е должен быть меньше трех |
9. Критерий Фишера | F | Математический критерий, характеризующий значимость уравнения регрессии. Применяется для выбора модели | F должен быть больше табличного значения, установленного для различных размеров матрицы и вероятностей |
10. Критерий Стьюдента | t | Существенность факторов, входящих в модель. Применяется для выбора модели | Больше двух (при вероятности, равной 0,95) |
11. Среднеквад-ратическая ошибка коэффициентов регрессии | Δai | Точность полученных коэффициентов регрессии. Применяется для оценки коэффициентов регрессии | В два и более раза меньше соответствующего коэффициента регрессии |
12. Ошибка аппроксимации | Е | Допуск прогноза или степень несоответствия эмпирической зависимости теоретической. Применяется для оценки адекватности (точности) модели | Меньше (точнее)+15% |
13. Коэффициент эластичности | Эi | Показывает, на сколько процентов изменяется функция при изменении соответствующего фактора на 1 %.Применяется для ранжирования факторов по их значимости | Больше 0,01 |
Факторный анализ следует проводить в следующей последовательности:
1. Обоснование объекта анализа, постановка цели.
2. Сбор исходных данных и их уточнение в соответствии с ранее описанными требованиями.
3. Построение гистограмм по каждому фактору с целью определения форм распределения случайных наблюдений.
Построение по каждому фактору корреляционных полей, т.е. графическое изображение функций от фактора с целью предварительного определения тесноты и формы связи между функцией и каждым фактором. Примеры корреляционных полей показаны на рис. 4.2.
Рис. 4.2. Примеры корреляционных полей
Корреляционные поля построены по исходным статистическим данным X1 — Х4 (факторы) и Y (функция). Анализ корреляционных полей показывает, что:
а) между Y и X4 теснота связи слабая, по форме она линейная, обратно пропорциональная;
б) между Y и Х1 теснота связи высокая, по форме она линейная, прямо пропорциональная;
в) между Y и Х3 связи нет, т.к. функцию Y = f(X3) можно провести в любом направлении;
г) между Y и Х4 теснота связи высокая, форма связи — гиперболическая, после линии А—А фактор Х4 на Y уже не оказывает влияния.
4. Составление матрицы исходных данных производится по следующей форме:
№ п/п | Y | X1 | Х2 | X3 | Принадлежность строки |
1 | 5,80 | 0,93 | 1,47 | Цех №1, I квартал 1997 г. | |
2 | 6,15 | 0,82 | 1,59 | Цех № 1, II квартал 1997 г. |
и т. д.
В матрицу исходных данных следует включать факторы, имеющие примерно такую форму связи, как Y с X1 и Х2 на рис. 4.2. Фактор Х3 с Y не имеет связи, поэтому этот фактор не следует включать в матрицу, фактор Х4 тоже не следует включать в матрицу, поскольку после линии А—А этот фактор влияния на Y не оказывает. Влияние подобных факторов на Y следует учитывать при помощи коэффициентов, определяемых отдельно для каждого фактора и группы предприятий.
Наши исследования показывают, что к организационным факторам, имеющим с экономическими показателями гиперболическую форму связи, относятся уровень освоенности продукции в установившемся производстве, программа ее выпуска и др.
5. Ввод информации и решение задачи на ЭВМ.
В экономических исследованиях для многофакторных регрессионных моделей чаще всего приемлемы две формы связи факторов с функцией: линейная и степенная. Для двухфакторных моделей применяются также гиперболическая и параболическая формы связи.
6. Анализ уравнения регрессии и его параметров в соответствии с требованиями, изложенными в табл. 4.3.
7. Составление матрицы исходных данных для окончательной модели и решение ее на ЭВМ. Апробация окончательной модели путем подстановки в нее фактических данных по одной из строк матрицы и сравнение полученного значения функции с ее фактическим значением.
При составлении новых матриц исходных данных из них исключаются поочередно:
а) один из двух факторов, коэффициент частной корреляции между которыми значительно больше коэффициентов парной корреляции между функцией и этими факторами. Например, если между двумя факторами коэффициент частной корреляции равен 0,95, а коэффициенты парной корреляции между функцией и этими факторами равны 0.18 и 0,73, то первый фактор с коэффициентом парной корреляции, равным 0,18, из матрицы можно исключить;